
BMS Institute of Technology and MgmtDepartment of ISE

SOFTWARE ARCHITECTURE AND
DESIGN PATTERNS/17IS72

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Course Outcomes
CO1 Understand the basic concepts to identify state & behaviour of real

world objects.
CO2 Apply Object Oriented Analysis and Design concepts to solve

complex problems.
CO3 Construct various UML models using the appropriate notation for

specific problem context.
CO4 Design models to Show the importance of systems analysis and

design in solving complex problems using case studies.
CO5 Study of Pattern Oriented approach for real world problems.

COS/P

OS

Program Outcomes

PO1
PO

2

PO

3

PO

4
PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

CO1 3 - - - - - - - - - - - - -

CO2 3 - - - - - - - - - - - - -

CO3 - 3 - - - - - - - - - - 2 -

CO4 - - 3 - - - - - - - - 3 -

CO5 - - 3 - - - - - - - - - -

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Syllabus and Text Books

Module-1: Introduction: what is a design pattern? Describing design
patterns, the catalog of design pattern, organizing the catalog, how
design patterns solve design problems, how to select a design pattern,
how to use a design pattern. What is object-oriented development? ,
key concepts of object oriented design other related concepts, benefits
and drawbacks of the paradigm

Module-2: Analysis a System: overview of the analysis phase, stage 1:
gathering the requirements functional requirements specification,
defining conceptual classes and relationships, using the knowledge of
the domain. Design and Implementation, discussions and further
reading.

Module-3: Design Pattern Catalog: Structural patterns, Adapter,
bridge, composite, decorator, facade, flyweight, proxy.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Module-4: Interactive systems and the MVC architecture: Introduction , The
MVC architectural pattern, analyzing a simple drawing program , designing the
system, designing of the subsystems, getting into implementation,
implementing undo operation , drawing incomplete items, adding a new
feature , pattern based solutions.

Module-5: Designing with Distributed Objects: Client server system, java
remote method invocation, implementing an object oriented system on the
web (discussions and further reading) a note on input and output, selection
statements, loops arrays.

Text Books:
1. Object-oriented analysis, design and implementation, brahma dathan,
sarnath rammath, universities press,2013
2. Design patterns, erich gamma, Richard helan, Ralph johman , john vlissides
,PEARSON Publication,2013.
Reference Books:
1. Frank Bachmann, RegineMeunier, Hans Rohnert “Pattern Oriented Software
Architecture” –Volume 1, 1996.
2. William J Brown et al., "Anti-Patterns: Refactoring Software, Architectures
and Projects in Crisis", John Wiley, 1998.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Module-1 : Introduction

What Is a Design Pattern?

Christopher Alexander says:
“Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing the same
thing twice.”

 Borrowed from Civil and Electrical Engineering domains.
 A technique to repeat designer success.
 A (Problem, Solution) pair

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Essential Elements
A pattern has four essential elements:
The pattern name that we use to describe a design

problem,
The problem that describes when to apply the pattern,
The solution that describes the elements that make up

the design, and
The consequences that are the results and trade-offs of

applying the pattern.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Design Patterns Are Not About Design

• Design patterns are not about designs such as linked lists and

hash tables that can be encoded in classes and reused as is.

• Design patterns are not complex, domain-specific designs for an

entire application or subsystem.

• One person's pattern can be another person's primitive building

block.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

What is and isn’t a design pattern

The design patterns are descriptions of communicating
objects and classes that are customized to solve a general
design problem in a particular context.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

What is and isn’t a design pattern
• A design pattern names, abstracts, and identifies the key aspects

of a common design structure that make it useful for creating a
reusable object-oriented design.

• The design pattern identifies the participating classes and
instances, their roles and collaborations, and the distribution of
responsibilities.

• Each design pattern focuses on a particular object-oriented
design problem or issue.

• It describes when it applies, whether it can be applied in view of
other design constraints, and the consequences and trade-offs
of its use.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

What is and isn’t a design pattern

• Although design patterns describe object-oriented designs, they
are based on practical solutions that have been implemented in
mainstream object-oriented programming languages like
Smalltalk and C++ rather than procedural languages(Pascal, C,
Ada) or more dynamic object-oriented languages (CLOS, Dylan,
Self)

• The choice of programming language is important because it
influences one's point of view. Our patterns assume
Smalltalk/C++-level language features, and that choice
determines what can and cannot be implemented easily.

• We might have included design patterns called "Inheritance",
"Encapsulation," and "Polymorphism."

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Design Patterns in Smalltalk MVC
The Model/View/Controller (MVC) triad of classes is used to build
user interfaces in Smalltalk-80. MVC consists of three kinds of
objects

1. Model is the application object,
2. View is its screen presentation,
3. Controller defines the way the user interface reacts to user

input.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

MVC decouples them to increase flexibility and
reuse.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

MVC decouples them to increase flexibility and
reuse.

1. MVC decouples views and models by establishing a
subscribe/notify protocol between them.

2. A view must ensure that its appearance reflects the state of the
model.

3. Whenever the model's data changes, the model notifies views that
depend on it.

4. In response, each view gets an opportunity to update itself.
5. This approach lets you attach multiple views to a model to provide

different presentations.
6. We can also create new views for a model without rewriting it.
7. The model contains some data values, and the views defining a

spreadsheet, histogram, and pie chart display these data in various
ways.

8. The model communicates with its views when its values change,
and the views communicate with the model to access these values.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Describing Design Patterns

Describing the design patterns in graphical
notations, simply capture the end product of the
design process as relationships between classes and
objects.

• In order to reuse the design, one must record
decisions, alternatives and trade-offs.

• Also need some concrete examples,
• Describe design pattern using consistent

format.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

A common way to describe a design pattern is the
use of the following template:
1. Pattern Name and Classification
2. Intent
3. Also Known As
4. Motivation (Problem, Context)
5. Applicability (Solution)
6. Structure (a detailed specification of structural aspects)
7. Participants, Collaborations (Dynamics)
8. Implementation
9. Sample code
10. Known Uses
11. Consequences
12. Related patterns

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Catalog of Design Patterns (23 patterns)

Pattern Name purpose

Abstract Factory
(87)

Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

Adapter (139) • Convert the interface of a class into another interface
clients expect.

• Lets classes work together with incompatible interfaces.

Bridge(1 51) • Decouple an abstraction from its implementation so that
the two can vary independently.

Builder (97) • Separate the construction of a complex object from its
representation

• So that the same construction process can create different
representations.

Chain of
Responsibility
(223)

• Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the
request.

• Chain the receiving objects and pass the request along the
chain until an object handles it.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Pattern Name purpose

Command (233) • Encapsulate a request as an object,
• Lets you parameterize clients with different requests,

queue or log requests, and support undoable operations.

Composite(163) • Compose objects into tree structures to represent part-
whole hierarchies.

• Lets clients treat individual objects and compositions of
objects uniformly.

Decorator(175) • Attach additional responsibilities to an object dynamically.
• Provide a flexible alternative to sub classing for extending

functionality.

Facade(185) • Provide a unified interface to a set of interfaces in a
subsystem.

• Defines a higher-level interface that makes the subsystem
easier to use.

Factory Method
(107)

• Define an interface for creating an object,
• But let sub classes decide which class to instantiate.
• Lets a class defer instantiation to subclasses.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Pattern Name purpose

Flyweight (195) • Use sharing to support large numbers of fine-grained objects
efficiently.

Interpreter
(243)

• Given a language, define a representation for its grammar
along with an interpreter that uses the representation to
interpret sentences in the language.

Iterator (257) • Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

Mediator (273) • Define an object that encapsulates how a set of objects
interact.

• Promotes loose coupling by keeping objects from referring to
each other explicitly,

• It lets you vary their interaction independently.

Memento (283) • Without violating encapsulation, capture and externalize an
object's internal state

• so that the object can be restored to this state later.

Observer (293) • Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are
notified and updated automatically.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Prototype
(117)

• Specify the kinds of objects to create using a prototypical instance,
• Create new objects by copying this prototype.

Proxy
(207)

• Provide a surrogate or placeholder for another object to control access
to it.

Singleton
(127)

• Ensure a class only has one instance, and provide a global point of
access to it.

State
(305)

• Allow an object to alter its behavior when its internal state changes.
• The object will appear to change its class.

Strategy
(315)

• Define a family of algorithms, encapsulate each one, and make them
interchangeable.

• Lets the algorithm vary independently from clients that use it.

Template
Method
(325)

• Define the skeleton of an algorithm in an operation, deferring some
steps to subclasses.

• Lets subclasses redefine certain steps of an algorithm without
changing the algorithm 's structure.

Visitor
(331)

• Represent an operation to be performed on the elements of an object
structure.

• Lets you define a new operation without changing the classes of the
elements on which it operates.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Catalog of Design Patterns

Design patterns vary in their granularity and level of abstraction. All
these patterns can be organized into catalog:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Patterns can have creational, structural or behavioral purpose

1. Creational patterns : concerns the process of object creation
2. Structural patterns: Deals with the composition of classes or objects
3. Behavioral patterns: characterize the ways in which classes or

objects interact and distribute responsibility.

Class patterns deal with relationships between classes and subclasses
thro’ inheritance therefore they are static fixed at compile time.

Object Patterns deals with object relationships, which can be changed
at run-time and are more dynamic.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

So the only patterns labeled "class patterns" are those that focus on
class relationships. Note that most patterns are in the Object scope.

• Creational class patterns defer some part of object creation to
subclasses

• Creational object patterns defer it to another object.
• Structural class patterns use inheritance to compose classes
• Structural object patterns describe ways to assemble objects.
• Behavioral class patterns use inheritance to describe algorithms and

flow of control
• Behavioral object patterns describe how a group of objects

cooperate to perform a task that no single object can carry out alone.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

How design patterns solve Design Problems

Design patterns solve many of the day-to-day problems :

1. Finding Appropriate Objects:
• Strict modeling of the real world leads to a system that reflects today's

realities but not necessarily tomorrow's.
• The abstractions that emerge during design are key to making a design

flexible.

2. Determining Object Granularity:
• Objects can vary tremendously in size and number.
• Represent everything down to the hardware or all the way up to entire

applications.
• How do we decide what should be an object?
• Design patterns addresses these issues, Faced, Flyweight, Factory, Builder etc

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. Specifying Object Interfaces:
• Every operation’s takes signature (operation name, parameters,

return val)
• Subtype inheriting the interface of its supertype.
• Objects are known only through their interfaces.
• The run-time association of a request to an object and one of its

operations is known as dynamic binding.
• Polymorphism (multiple operations with same name and different

parameter list.
• Design patterns help you define interfaces by identifying their key

elements and the kinds of data that get sent across an interface.

How design patterns solve Design Problems

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

4. Specifying Object Implementations
• The class specifies the object's internal data and representation

and defines the operations the object can perform.

OMT-notation for class

• A dashed arrowhead line indicates a class that
instantiates objects of another class. The arrow
points to the class of the instantiated objects.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

4. Specifying Object Implementations

• New classes can be defined in terms of
existing classes using class inheritance.

• An abstract cl ass is one whose main
purpose is to define a common interface
for its subclasses.

• An abstract class will defer some or all of
its implementation to operations defined
in subclasses;

• hence an abstract class cannot be
instantiated.

• The operations that an abstract class
declares but doesn't implement are called
abstract operations.

• Classes that aren't abstract are called
concrete classes.

Pseudo code
for operation

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• A mixin class is a class that 's intended to provide an optional
interface or functionality to other classes.

• It's similar to an abstract class in that it's not intended to be
instantiated.

• Mixin classes require multiple inheritance:

4. Specifying Object Implementations

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

5. Class versus Interface Inheritance:

• When we say that an object is an instance of a class, we
imply that the object supports the interface defined by the
class.

Difference between class inheritance and interface inheritance
(or subtyping).
• Class inheritance defines an object's implementation in terms

of another object's implementation. it's a mechanism for
code and representation sharing.

• In contrast, interface inheritance (or subtyping) describes
when an object can be used in place of another.

• The standard way to inherit an interface in C++ is to inherit
publicly from a class that has (pure) virtual member
functions.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

6. Programming to an Interface, not an Implementation:

• Class inheritance is basically just a mechanism for extending an
application's functionality by reusing functionality in parent
classes.

• It lets you define a new kind of object rapidly in terms of an old
one.

• It lets you get new implementations almost for free, inheriting
most of what you need from existing classes.

There are two benefits to manipulating objects solely in terms of
the interface defined by abstract classes:
1. Clients remain unaware of the specific types of objects they use, as long as
the objects adhere to the interface that clients expect.
2. Clients remain unaware of the classes that implement these objects.
Clients only know about the abstract class(es)defining the interface.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

7. Putting Reuse Mechanisms to Work:

• Concepts like objects, interfaces, classes, and inheritance are
applied to build flexible, reusable software, and

• Design patterns shows effectively all these.

a. Inheritance versus Composition:

• The two most common techniques for reusing functionality in
object-oriented systems are class inheritance and object
composition.

• Implementation of one class in terms of another's-> inheritance.
• Reuse by subclassing is often referred to as white-box reuse.
• Object Composition is an alternative to class inheritance.

• A new functionality is obtained by assembling or composing
objects with well-defined interfaces to get more complex
functionality called black-box reuse.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Inheritance Composition
Class inheritance is defined at compile
time and straightforward to use

Object composition is defined dynamically
at run-time through objects acquiring
references to other objects.

Directly supported by languages Composition requires objects to respect
each others' interfaces-carefully designed
interfaces

Easy to modify the implementation
being reused

Objects are accessed solely through their
interfaces, we don't break encapsulation.

Subclass can override the operation and
make changes

Any object can be replaced at run-time by
another as long as it has the same type.

you can't change the implementations
inherited from parent classes at run-
time, because inheritance is defined
at compile-time.

A design based on object composition will
have more objects (if fewer classes), and the
system's behavior will depend on their
Interrelationships.

"inheritance breaks encapsulation" Object composition helps you keep each
class encapsulated and focused on one task.

Implementation dependencies can
cause problems when trying to reuse a
subclass

There are substantially fewer
implementation dependencies.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

b. Delegation

• Delegation is a way of making composition as powerful for
reuse as inheritance. Best example of object composition.

Two objects are involved in
handling a request: a
receiving object delegates
operations to its delegate.
Analogous to subclasses
deferring requests to
parent classes.

The receiver passes itself to the delegate to let the delegated
operation refer to the receiver. Example: Window class delegating
its Area operation to a Rectangle instance Fig.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

b. Delegation Advantages and Disadvantages

• It makes it easy to compose behaviors at run-time and to change
the way they're composed.

• Example: Window can become circular at run-time simply by
replacing its Rectangle instance with a Circle instance, assuming
Rectangle and Circle have the same type.

• Delegation has a disadvantage it shares with other techniques
that make software more flexible through object composition.

• Dynamic, highly parameterized software is harder to understand
than more static software.

• There are also run-time inefficiencies,
• Delegation works best when it's used in highly stylized ways—that

is, in standard patterns.
• Several design patterns use delegation, State(3 05),Strategy(315),

and Visitor(331) patterns

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

c. Inheritance versus Parameterized Types

• Parameterized types another (not strictly object-oriented) technique
for reusing functionality.

• Also known as generics (Ada, Eiffel) and templates (C++).
• The unspecified types are supplied as parameters at the point of use.
• Example: To declare a list of integers, you supply the type "integer"

as a parameter to the List parameterized type.
Many designs can be implemented using any of these three techniques
1. An operation implemented by subclasses (an application of Template
Method (325)),
2. The responsibility of an object that 's passed to the sorting routine
(Strategy(315)) ,
3. An argument of a C++ template or Ada generic that specifies the
name of the function to call to compare the elements.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

8. Relating Run-Time and Compile-Time Structures

• The code structure is frozen at compile-time; it consists of classes
in fixed inheritance relationships.

• A program's run-time structure consists of rapidly changing
networks of communicating objects.

• The two structures are largely independent.
• Object aggregation and acquaintance they manifest themselves

at compile- and run-times.
• Aggregation implies that one object owns or is responsible for

another object. i.e., an object having or being part of another
object.

• Aggregation implies that an aggregate object and its owner have
identical lifetimes.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• Acquaintance implies that an object merely knows of
another object.

• Sometimes acquaintance is called "association” or the
"using" relationship.

• Acquainted objects may request operations of each other,
but they aren't responsible for each other.

• Acquaintance is a weaker relationship than aggregation
and suggests much looser coupling between objects.

It's easy to confuse aggregation and acquaintance, because they
are often implemented in the same way.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

9. Designing for Change

• The key to maximizing reuse lies in anticipating new requirements and
changes to existing requirements, and in designing your systems so that
they can evolve accordingly.

• A design that doesn't take change into account risks major redesign in
the future.

• Redesign affects many parts of the software system, and unanticipated
changes a re invariably expensive.

• Each design pattern lets some aspect of system structure vary
independently of other aspects, thereby making a system more robust
to a particular kind of change.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

some common causes of redesign along with the
design pattern(s) that address them:

1. Creating an object by specifying a class explicitly.
2. Dependence on specific operations.
3. Dependence on hardware and software platform.
4. Dependence on object representations or implementations.
5. Algorithmic dependencies.
6. Tight coupling.
7. Extending functionality by subclassing.
8. Inability to alter classes conveniently.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The role design patterns play in the development
of three broad classes of software:
1. application programs,
2. toolkit s, and
3. frameworks.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

1. application programs
Design patterns makes
a. An application more maintainable when they're used to limit

platform dependencies and to layer a system.
b. Enhance extensibility
c. Extending a class in isolation is easier if the class doesn't depend

on lots of other classes.

2. Toolkits
• Often an application will incorporate classes from one or more

libraries of predefined classes called toolkits.
• A toolkit is a set of related and reusable classes designed to

provide useful, general-purpose functionality.
• Toolkit design is arguably harder than application design,
• toolkits have to work in many applications to be useful.
• assumptions and dependencies that can limit the toolkit's

flexibilityand consequently its applicability and effectiveness.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. Frameworks
• A framework is a set of cooperating classes that make up a

reusable design for a specific class of software
• For example, a framework can be geared toward building graphical

editors for different domains like artistic drawing, music
composition, and mechanical CAD

• The framework dictates the architecture of your application.
• It will define the overall structure, its partitioning into classes and

objects, the key responsibilities thereof, how the classes and
objects collaborate and the thread of control.

• The framework captures the design decisions that are common to
its application domain.

• Frameworks thus emphasize design reuse over code reuse, though
a framework will usually include concrete subclasses you can put
to work immediately.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Patterns and frameworks different in three major ways:

1. Design patterns are more abstract than frameworks.
2. Design patterns are smaller architectural elements

than frameworks.
3. Design patterns are less specialized than

frameworks.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

How to Select a Design Pattern

Approaches to finding the design pattern that's right for your
problem:

1. Consider how design patterns solve design problems.
2. Scan the intent sections
3. Study how the patterns interrelate
4. Study patterns of like purpose
5. Examine a cause of redesign
6. Consider what should be variable in your design

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

How to Use a Design Pattern

A step-by-step approach to applying a design pattern effectively:

1. Read the pattern once through for an overview.
2. Go back and study the Structure, Participants, and Collaborations

sections.
3. Look at the Sample Code section to see a concrete example of the

pattern in code.
4. Choose names for pattern participants that are meaningful in the

application context
5. Define the classes.
6. Define application-specific names for operations in the pattern.
7. Implement the operations to carry out the responsibilities and

collaborations in t he pattern

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Basic Object Oriented Concepts

• What is Object-Oriented development?
• Key concepts of Object oriented design
• Other related concepts
• Benefits and drawbacks of the paradigm.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• The success of many mechanical designs and systems are due to
the easy way of its representation and

• Designs as a separate independent part. Can be reused again and
again.

• A similar idea was implemented in software product
development also where some proved off-the-shelf components
are used.

Making the system design easy and understandable

Possible through:
• An easily understandable designs
• similar (standard) solutions for a host of problems,
• An easily accessible and well-defined ‘library’ of ‘building-blocks’,
• Interchangeability of components across systems,

The overall philosophy here is to define a software system as a
collection of objects of various types that interact with each other
through well-defined interfaces.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Key concepts of Object oriented design

1. The central role of objects: centrepiece of software design
2. The Notion of a Class: define hierarchies and engage with the

ideas of specialisation and generalisation of objects.
3. Abstract Specification of Functionality: specification, called an

interface or an abstract class
4. A Language to Define the System : The Unified Modelling Language
(UML) as the standard tool for describing the end products of the
design activities. Similar to ‘blueprints’.
5. Standard Solutions: documenting of standard solutions, called
design patterns-> common form of reuse of solutions
6. An Analysis Process to Model a System: systematic way to translate
a functional specification to a conceptual design.
7. The Notions of extendability and Adaptability: Inheritance,
composition

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Other Related Concepts
1. Modular Design and Encapsulation:
• Modularity: Putting together a large system by developing a number

of distinct components independently and then integrating these to
provide the required functionality.

• Encapsulation: Module hides details of its implementation from
external agents, using ADT.

2. Cohesion and Coupling:
• Cohesion:

 cohesion of a module tells us how well the entities within a
module work together to provide this functionality.

 Highly cohesive modules tend to be more reliable, reusable, and
understandable.

• Coupling:
 Coupling refers to how dependent modules are on each other.
 high coupling means that changes in one module would

necessitate changes in other modules, domino effect.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. Modifiability and Testability

• Modifiability: Modification can be done to change both functionality
and design.

• Modifiable systems are more adaptable.
• Improving the design through incremental change is accomplished

by refactoring
• Testability :
• Testability of a concept, in general, refers to both falsifiability,
• it can simply be stated as the ease with which we can find bugs in a

software and the extent to which the structure of the system
facilitates the detection of bugs.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Benefits and Drawbacks of the Paradigm

1. Objects often reflect entities in application systems
2. Object-orientation helps increase productivity through reuse of

existing software.
3. It is easier to accommodate changes.
4. The ability to isolate changes, encapsulate data, and employ

modularity reduces the risks involved in system development.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISE

Module-2 :
Analysing a System

BMS Institute of Technology and MgmtDepartment of ISE

Contents :

1. Overview of the analysis phase
2. Stage 1: Gathering the Requirements

 Case Study Introduction
3. Functional Requirements Specification

 Use Case Analysis
4. Defining Conceptual Classes and Relationships
5.Using the Knowledge of the Domain
6.Discussion and Further Reading
7.Design and Implementation

BMS Institute of Technology and MgmtDepartment of ISE

1. Overview of the analysis phase

What should the system do?
Simple minded approach does not suffice for the real-life projects:
reasons:
1. Systems are typically much bigger in scope and size.
2. Have complex and ambiguously-expressed requirements.
3. Usually a large amount of money involved, which makes matters

quite serious.
4. Project deadlines for these ‘real-life’ projects are more critical

BMS Institute of Technology and MgmtDepartment of ISE

The process of building a system could be split into 3
activities:

1. Gather the requirements: this involves interviews of the user
community, reading of any available documentation, etc.
2. Precisely document the functionality required of the system.
3. Develop a conceptual model of the system, listing the conceptual
classes and their relationships.

These activities could be iterative or nested

BMS Institute of Technology and MgmtDepartment of ISE

Stage 1: Gathering the Requirements

The purpose of requirements analysis is to define what the new
system should do.
• System will be built based on the information garnered.
• Any errors made in this stage will result in the implementation

of a wrong system.
• Once the system is implemented, it is expensive to modify it to

overcome the mistakes introduced in the analysis stage.
• Requirements for a new system are determined by a team of

analysts by interacting development (clients) and the user
community.

• This interaction can be in the form of interviews, surveys,
observations, study of existing manuals, etc.,

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Requirements can be classified into 2 categories

1. Functional requirements :

These describe the interaction between

• System and its users,

• System and any other systems, which may interact with the
system by supplying or receiving data.

2. Non-functional requirements: Any requirement that does
not fall in the above category is a non-functional requirement.

• Such as response time, usability and accuracy.

• May be considerations that place restrictions on system
development; the use of specific hardware and software
and budget and time constraints.

BMS Institute of Technology and MgmtDepartment of ISE

Case Study : A simple library system

Functionality is described as a list called business processes.
The business processes of the library system are listed below.
1. Register new members
2. Add books to the collection
3. Issue a book to a member (or user)
4. Record the return of a book
5. Remove books from the collection
6. Print out a user’s transactions
7. Place/remove a hold on a book
8. Renew books issued to a member
9. Notify member of book’s availability

BMS Institute of Technology and MgmtDepartment of ISE

A simple library system In addition, the system must support
three other requirements that are not directly related to the
workings of a library:
1. A command to save the data on a long-term basis.
2. A command to load data from a long-term storage device.
3. A command to quit the application. At this time, the

system must ask the user if data is to be saved before
termination.

BMS Institute of Technology and MgmtDepartment of ISE

Functional Requirements Specification
• The requirements be precisely documented.
• The requirements specification document serves as a contract

between the users and the developers.
• No confusion as to what the expectations are.
• An accepted way of accomplishing this task is the use case analysis,
Use Case Analysis:
Def: Use case analysis is a case-based way of describing the uses of
the system with the goal of defining and documenting the system
requirements.
• A narrative describing the sequence of events (actions) of an

external agent (actor) using the system to complete a process.
• It is a powerful technique that describes the kind of functionality

that a user expects from the system.
• Use cases have two or more parties:

1. Agents: Who interact with the system
2. The system itself.

BMS Institute of Technology and MgmtDepartment of ISE

A simple library system…

It provides a menu with the following choices

1. Add a member
2. Add books
3. Issue books
4. Return books
5. Remove books
6. Place a hold on a book
7. Remove a hold on a book
8. Process Holds: Find the first member
who has a hold on a book
9. Renew books
10. Print out a member’s transactions
11. Store data on disk
12. Retrieve data from disk
13. Exit

Use case diagram
for the library system

BMS Institute of Technology and MgmtDepartment of ISE

Use case for registering a user: specified using a 2-column format

A simple library system…

BMS Institute of Technology and MgmtDepartment of ISE

Illustrates several aspects of use cases.

1. Every use case has to be identified by a name.
Ex: Register New Member

2. Reasonably-sized activity in the organisation.
• Not all actions and operations should be identified as use cases.

Ex: stamping a due-date on the book should not be a use case

• A use case is a relatively large end-to-end process description
that captures some business process

• A business process may be decomposed into more than one use
case

• when there is some intervening real-world event(s) for which
the agent has to wait for an unspecified length of time.

3. The first step of the use case specifies a ‘real-world’ action that
triggers the exchange described in the use case.

A simple library system…

BMS Institute of Technology and MgmtDepartment of ISE

4. The use case does not specify how the functionality is
to be implemented. Ex: the details of how the clerk
enters the required information into the system is
unspecified.

5. The use case is not expected to cover all possible
situations.
• Use case does not specify what the system should do

if there are errors.
• The use case explains only the most commonly-

occurring scenario- referred to as the main flow.

A simple library system…

BMS Institute of Technology and MgmtDepartment of ISE

A simple library system…
Use case for adding books:

BMS Institute of Technology and MgmtDepartment of ISE

Use case for issuing books:
A simple library system…

BMS Institute of Technology and MgmtDepartment of ISE

• Putting all these details in the use case would make the use
case quite messy and harder to understand. Business Rules.

• A business rule may be applicable to one or more use cases.
• Example: The business rule for due-date generation is simple

in our case.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

After applying the rules in the Book Checkout use case

BMS Institute of Technology and MgmtDepartment of ISE

Similarly use case for the remaining can be written using table
1. Use case for returning books table 6.6
2. Use cases for removing (deleting) books, printing member

transactions, placing a hold, and removing a hold (Table 6.7,
Table 6.8, Table 6.9, Table 6.10)

BMS Institute of Technology and MgmtDepartment of ISE

How do Business Rules Relate to Use Cases?

• Business rules can be broadly defined as the details through
which a business implements its strategy.

• Business analysts perform the task of gathering business rules,
and these belong to one of four categories:

1. Definitional rules
2. Factual rules
3. Constraints
4. Derivations

BMS Institute of Technology and MgmtDepartment of ISE

Defining Conceptual Classes and Relationships

The last major step in the analysis phase involves the determination
of the conceptual classes and the establishment of their
relationships. Usefulness of this step is:
1. Design facilitation
2. Added knowledge
3. Error reduction
4. Useful documentation

BMS Institute of Technology and MgmtDepartment of ISE

Guidelines to Remember When Writing Use Cases

1. A use case must provide something of value to an actor or to the business :
each use case has at least one actor.

2. Use cases should be functionally cohesive : they encapsulate a single service
that the system provides.

3. Use cases should be temporally cohesive : constitute separate use cases
4. If a system has multiple actors, each actor must be involved in at least one,

and typically several use cases.
5. The model that we construct is a set of use cases, i.e., there is no

relationship between individual use cases.
6. Exceptional exit conditions are not handled in use cases: For instance, if a

system should crash in the middle of a use case,
7. Use cases are written from the point of view of the actor in the active voice.
8. A use case describes a scenario, : i.e., tells us what the visible outcome is and

does not give details of any other requirements that are being imposed on
the system.

9. Use cases change over the course of system analysis: Use cases may be
merged, added or deleted from the model at any time.

BMS Institute of Technology and MgmtDepartment of ISE

The text of use case, all nouns bold-faced:
(1) The customer fills out an application form containing the

customer’s name, address, and phone number and gives this
to the clerk.

(2) The clerk issues a request to add a new member.
(3) The system asks for data about the new member.
(4) The clerk enters the data into the system.
(5) Reads in data, and if the member can be added, generates an

identification number for the member and remembers
information about the member. Informs the clerk if the
member was added and outputs the member’s name, address,
phone, and id.

(6) The clerk gives the user his identification number.

In practice the analyst will use multiple methods to come
up with the conceptual classes and their relationships

BMS Institute of Technology and MgmtDepartment of ISE

First, let us eliminate duplicates to get list

customer, application form, customer’s name, address, phone
number, clerk, request, system, data, identification number,
member, user, member information, and member’s name.
Some of the nouns such as member are composite entities
that qualify to be classes.

1. customer: becomes a member, so it is effectively a synonym for member.
2. user: the library refers to members alternatively as users, so this is also a synonym.
3. application form and request: application form is an external construct for gathering
information, and request is just a menu item, so neither actually becomes
part of the data structures.
4. customer’s name, address, and phone number: They are attributes of a customer,
so the Member class will have them as fields.
5. clerk: is just an agent for facilitating the functioning of the library, so it has no
software representation.
6. identification number: will become part of a member.
7. data: gets stored as a member.
8. information: same as data related to a member.
9. system: refers to the collection of all classes and software.

BMS Institute of Technology and MgmtDepartment of ISE

The UML convention is to write the class name at the top with
a line below it and the attributes listed just below that line.

UML diagram for
the class Member

UML diagram showing the association of Library and
Member : one-to-many association: mean that one
instance of the Library maintains a collection of zero or
more members.

• In this example we have many conceptual classes like library
members, system etc.,

• Some associations are static, i.e., permanent, whereas others are
dynamic. Dynamic associations are those that change as a result of
the transactions being recorded by the system.

• Such associations are typically associated with verbs.

BMS Institute of Technology and MgmtDepartment of ISE

• many-to-many between users and books.
• Several users can have holds placed on a book, and a user may place holds

on an arbitrary number of books.

BMS Institute of Technology and MgmtDepartment of ISE

We capture all of the conceptual classes and their associations
into a single diagram:

• Additional information can be accompanied.
• This is added when a user borrows a book and when a user places a hold on

a book.
• Borrowing a book introduces new information into the system, viz., the date

on which the book is due to be returned. Likewise, placing a hold introduces
some information, viz., the date after which the book is not needed.

• conceptual classes are attached to the line representing the corresponding
associations.

BMS Institute of Technology and MgmtDepartment of ISE

Using the Knowledge of the Domain

• Domain analysis is the process of analysing related application
systems in a domain so as to discover what features are common
between them and what parts are variable.

OR
• we identify and analyse common requirements from a specific

application domain.
• we apply the knowledge we already have from our study of similar

systems to speed up the creation of specifications, design, and
code.

• one of the goals of this approach is reuse.
• For example, we could say that the
domain (university applications) => domain (course management +
student admissions + payroll applications, and so on)
• The interactions of the smaller domains that make up the bigger

one.

BMS Institute of Technology and MgmtDepartment of ISE

In the domain of libraries includes the following.
1. The environment, including customers and users. Libraries have

loanable items such as books, CDs, periodicals, etc. A library’s
customers are members. Libraries buy books from publishers.

2. Terminology that is unique to the domain. For example, the Dewey
decimal classification (DDC) system for books.

3. Tasks and procedures currently performed. In a library system, for
example:

(a) Members may check out loanable items.
(b) Some items are available only for reference; they cannot be
checked out.
(c) Members may put holds on loanable items.
(d) Members will pay a fine if they return items after the due date.

BMS Institute of Technology and MgmtDepartment of ISE

Finding the Right Classes

• In general, finding the right classes is non-trivial.
• Process is iterative,

• The following thumb rules and caveats come in handy:

1. Do not build classes around functions. If class name is
imperative, e.g., print, parse, etc., either the class is wrong or the
name is wrong.

2. Remember that a class usually has more than one method;
otherwise it is probably a method that should be attached to
some other class.

3. Do not form an inheritance hierarchy too soon unless we have a
preexisting taxonomy.

BMS Institute of Technology and MgmtDepartment of ISE

4. Be wary of classes that have no methods, Some
situations in which they occur are:

a) representing objects from outside world,
b) encapsulating facilities, constants or shared

variables,
c) applicative classes used to describe non-modifiable

objects,
5. Check for the following properties of the ideal class:

a. a clearly associated abstraction, which should be a
data abstraction (as opposed to a process
abstraction),

b. a descriptive noun/adjective for the class name,
c. a nonempty set of runtime objects,
d. queries and commands,
e. abstract properties that can be described as

pre/post conditions and invariants.

BMS Institute of Technology and MgmtDepartment of ISE

One of the major activities of this analysis is discovering
the business rules, the rules that any properly-functioning
system in that domain must conform to.

Q. Where does the knowledge of a specific domain come
from?
• It could be from sources such as surveys, existing

applications, technical reports, user manuals, and so on.

Domain analysis

BMS Institute of Technology and MgmtDepartment of ISE

Chapter 7: Design and Implementation

BMS Institute of Technology and MgmtDepartment of ISE

Contents:
1. Design

a. Major Subsystem
b. Creating the software classes
c. Assigning responsibilities to the classes
d. Class diagrams
e. User interface
f. Data storage

2. Implementing our design

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

During the design process, a number of questions need to
be answered:
1. On what platform(s) (hardware and software) will the system run?
2. What languages and programming paradigms will be used for

implementation?
3. What user interfaces will the system provide?
4. What classes and interfaces need to be coded? What are their

responsibilities?
5. How is data stored on a permanent basis? What medium will be used?

What model will be used for data storage?
6. What happens if there is a failure? Ideally, we would like to prevent data

loss and corruption. What mechanisms are needed for realising this?
7. Will the system use multiple computers? If so, what are the issues related

to data and code distribution?
8. What kind of protection mechanisms will the system use?

Design:
We use the class structure produced by the analysis to design
a system that behaves in the manner specified by the model.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

a. Major Subsystems:
The first step in our design process is to identify the major
subsystems. We can view the library system as composed of two
major subsystems:
1. Business logic This part deals with input data processing, data
creation, queries, and data updates. This module will also be
responsible for interacting with external storage, storing and
retrieving data.
2. User interface This subsystem interacts with the user, accepting
and outputting information.

It is important to design the system such that the above parts are
separated from each other so that they can be varied independently.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

b. Creating the Software Classes:
• During the analysis, after defining the use case model, we came up

with a set of conceptual classes and a conceptual class diagram for
the entire system.

• The software classes are more ‘concrete’ in that they correspond to
the software components that make up the system.

In this phase there are two major activities.
1. Come up with a set of classes.
2. Assign responsibilities to the classes and determine the necessary

data structures and methods.
• Several iterations may be needed and classes may need to be

added, split, combined, or eliminated.
• The classes for the business logic module will be the ones

instrumental in implementing the system requirements described in
the use case model.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Conceptual classes of Library System are:
1. Member and Book : Each Member object comprises
several attributes such as name and address, stays in the
system for a long period of time and performs a number of
useful functions.
2. Library a library, can be viewed as borrowing and
returning books, placing and removing holds, i.e., the
functionality provided by the library.
• All the computation required of the business logic

module must be executed on some current object; that
object is a Library.

• So Library be class in its own.
• A class that has just one instance is called a singleton.

Both MemberList and Catalog are singletons.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. Borrows: (An association class between member and books class)

• This class represents the one-to-many relationship
between members and books.

• In typical one-to-many relationships, the association
class can be efficiently implemented as a part of the two
classes at the two ends.

4. Holds: (An association class between member and books class)

This class denotes a many-to-many relationship between
the Member and Book classes.
• In typical many-to-many relationships, implementation

of the association without using an additional class is
unlikely to be clean and efficient.

• Have a class for this relationship and make the Hold
object accessible to the instances of Member and Book

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

C. Assigning Responsibilities to the Classes:
• Having decided on an adequate set of software

classes, next task is to assign responsibilities to these.
• The ultimate purpose of these classes is to enable the

system to meet the responsibilities specified in the
use case.

• For each system response listed in the right-hand
column of the use case tables, we need to specify the
following:

a. The sequence in which the operations will occur.- we
need a complete algorithm

b. How each operation will be carried out.- Describes
which classes will be involved in each step of the
algorithm and how the classes will be engaged.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Register Member: Sequence Diagram:
This interaction occurs between the library staff member and the
UserInterface instance. The clerk enters the requested data, which the
UserInterface accepts.
The addMember method, algorithm here consists of three steps:
1. Create a Member object.
2. Add the Member object to the list of members.
3. Return the result of the operation.

To carry out the first two steps, we have two options:
Option1:
• Invoke the Member constructor from within the addMember method of

Library.
• The constructor returns a reference to the Member object and an operation,

insertMember, is invoked on MemberList to add the new member.

Option2:
• Invoke an addNewMember method on MemberList and pass as parameters all

the data about the new member.
• MemberList creates the Member object and adds it to the collection.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

To carry out the first two steps, we have two options:
Option1:

• Invoke the Member constructor from within the addMember
method of Library.

• The constructor returns a reference to the Member object and an
operation, insertMember, is invoked on MemberList to add the
new member.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Add Books: This use case allows the insertion of an

arbitrary number of books into the system. In this case, when
the request is made by the actor, the system enters a loop.
The algorithm here consists of the following steps:
(i) create a Book object,
(ii) add the Book object to the catalog and
(iii) return the result of the operation.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Issue Books: When a book is to be checked out, the clerk

interacts with the UI to input the user’s ID. The system has to first
check the validity of the user. This is accomplished by invoking the
method searchMembership on the Library.
Two options suggest themselves for implementing the search:
Option 1 Get an enumeration of all Member objects from
MemberList, get the ID from each and compare with the target ID.
• Option 2 Delegate the entire responsibility to MemberList.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Return Books:
• For each book returned, the returnBook method of the Library

class obtains the corresponding Book object from Catalog.
• The returnBook method is invoked using this Book object, and

this method returns the Member object corresponding to the
member who had borrowed the book.

• The returnBook method of the Member object is now called to
record that the book has been returned.

• This operation has three possible outcomes that the use case
requires the system to distinguish.

1. The book’s IDwas invalid,whichwould result in the operation
being unsuccessful;

2. the operation was successful;
3. The operation was successful and there is a hold on the book.
The value returned by returnBook must enable UserInterface to
make the distinction between these.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Sequence diagram for returning books

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Remove Books:
• we remove only those books that are not checked out and do

not have a hold. This logic for deciding whether the book is
removable is in the removeBook method in Library.

• This method checks each property of the book in question and
if all properties are satisfied, the remove method in Catalog is
invoked, which then removes the book.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Member Transactions:
• The end-user (clerk) interacts with the Library class to print out the

transactions of a given member.
• The Member class stores the necessary information about the

transactions, but the UI would be the one to decide the format.
• It would, therefore, be desirable to provide the information to the

UI as a collection of objects, each object containing the information
about a particular transaction.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Class Diagrams:
1. Library
2. MemberList
3. Catalog
4. Member
5. Book
6. Hold
7. Transaction

Relationships between the software classes

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Class diagram for Library

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Class Diagram for Member

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Class Diagram for Book

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Class Diagram for Catalog Class Diagram for MemberList

Class Diagram for Hold Class Diagram for Transaction

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

User Interface: UI provides a menu with the following options

1 Add a member
2 Add books
3 Issue books
4 Return books
5 Renew books
6 Remove books
7 Place a hold on a book
8 Remove a hold on a book
9 Process holds
10 Print a member’s transactions on a given date
11 Save data for long-term storage
12 Retrieve data from storage
0 Exit
13 Help

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Data Storage
In a full-blown system, data is usually stored in a database,
and this data is managed by a database management
system.
Include the following commands in UI.
1. A command to save the data on a long-term basis.
2. A command to load data from a long-term storage device.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementing Our Design
• Library has several methods that return int values, and these

values must be interpreted by the UI.
• A separate named constant is declared for each of these outcomes

as shown below.
public static final int BOOK_NOT_FOUND = 1;
public static final int BOOK_NOT_ISSUED = 2;
// etc.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Setting Up the Interface:
The main program resides in the class UserInterface. When the
main program is executed, an instance of the UserInterface is
created (a singleton).
public static void main(String[] s)
{
UserInterface.instance().process();
}

public static UserInterface instance()
{
if (userInterface == null) {
return userInterface = new UserInterface();
} else {
return userInterface;
}
}

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

private UserInterface()
{
File file = new File("LibraryData");
if (file.exists() && file.canRead()) {
if (yesOrNo("Saved data exists. Use it?"))
{
retrieve();
}
}
library = Library.instance();
}

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

public void process() {
int command;
help();
while ((command = getCommand()) != EXIT) {
switch (command) {
case ADD_MEMBER: addMember();
break;
case ADD_BOOKS: addBooks();
break;
case ISSUE_BOOKS: issueBooks();
break;
// several lines of code not shown
case HELP: help();
break;
}
}
}

Process Method of UI

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Adding New Books

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

addBook() method in Library is invoked:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Catalog (which is also a singleton) is an
adapter for the LinkedList class, so all it does is to
invoke the add method in Java’s LinkedList class,

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Issuing Books

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The issueBook()s the necessary processing and
returns a reference to the issued book.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The issue methods in Book and Member record the fact
that the book is being issued. The method in Book
generates a due date for our simple library by adding
one month to the date of issue.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Member is also keeping track of all the transactions (issues
and returns) that the member has completed. This is done
by defining the class Transaction.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

With each book issued, a record is created and added to
the list of transactions, as shown in the following code
snippet from Member.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Placing and Processing Holds
• When placing a hold, the information about the hold is passed to

Library, which checks the validity of the information and creates a
Hold object

• The problem with this simple solution is that unwanted holds can
stay in the system forever.

• To prevent this, we may want to delete all invalid holds periodically,
perhaps just before the system is saved to disk.

To process a hold,
Library invokes the
getNextHold
method in Book,
which returns the
first valid hold.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Storing and Retrieving the Library Object
Java Serialization
• long-term storage of the library data uses the Java

serialization mechanism.
• The methods readObject()and writeObject (Object) in

ObjectInputStream and ObjectOutputStream respectively
can be used to read and write objects and that this can be
easily done for simple cases by having the corresponding
class implement the Serializable interface.

• The default serialization mechanism in Java does not store
static fields.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISE

Module-3

Design Pattern Catalog

BMS Institute of Technology and MgmtDepartment of ISE

Structural Patterns
Design Patterns are of 3 types:

1. Creational : address problems of creating an object in a
flexible way, separate creation from operation/use.

2. Structural : address problems of using O-O constructs like
inheritance to organize classes and objects.

3. Behavioral: address problems of assigning responsibilities
to classes. Suggest both static relationships and patterns of
communication (use case)

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISE

Structural Patterns

Structural patterns are concerned with how classes and objects are
composed to form larger structures.

 Structural class patterns use inheritance to compose interfaces
or implementations.

 This pattern is particularly useful for making independently
developed class libraries work together.

 Structural object patterns describe ways to compose objects to
realize new functionality.

 The added flexibility of object composition comes from the
ability to change the composition at runtime, which is
impossible with static class composition.

BMS Institute of Technology and MgmtDepartment of ISE

A common ways to describe a design pattern is the
use of the following template:
1. Pattern Name and Classification
2. Intent
3. Also Known As
4. Motivation (Problem, Context)
5. Applicability (Solution)
6. Structure (a detailed specification of structural aspects)
7. Participants, Collaborations (Dynamics)
8. Implementation
9. Example
10. Known Uses
11. Consequences
12. Related patterns

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Convert the

interface of a

class into another

Interface clients

expect.

Adapter (Non software example)

BMS Institute of Technology and MgmtDepartment of ISE

Pattern Name: Adapter

Intent:
 Convert the interface of a class into another interface clients

expect. Adapter lets classes work together that could not
otherwise because of incompatible interfaces.

Collaborations:
 Clients call operations on an Adapter instance. In turn, the

adapter calls Adaptee operations that carry out the request.

Also Known As: Wrapper

BMS Institute of Technology and MgmtDepartment of ISE

Motivation:
Adapter…

 Sometimes a toolkit class that's designed for reuse isn't
reusable only because its interface doesn't match the domain-
specific interface an application requires.

 Consider for example a drawing editor that lets users draw and
arrange graphical elements (lines, polygons, text, etc.) into
pictures and diagrams.

 The interface for graphical objects is defined by an abstract
class called Shape.

 The editor defines a subclass of Shape for each kind of
graphical object.

 Classes for elementary geometric shapes are easy to
implement. But a TextShape subclass that can display and edit
text is more difficult to implement. (screen updates, buffer
updates)

BMS Institute of Technology and MgmtDepartment of ISE

How can existing and unrelated classes like TextView
work in an application that expects classes with a different
and incompatible interface?

• We could define TextShape so that it adapts the TextView
interface to Shape's.
1. by inheriting Shape's interface and TextView's

implementation or
2. by composing a TextView instance within a TextShape and

implementing TextShape in terms of TextView's interface.

BMS Institute of Technology and MgmtDepartment of ISE

 The two approaches correspond to the class and
object versions of the Adapter pattern. We call
TextShape an adapter.

 We can see how BoundingBox requests, declared
in class Shape, are converted to GetExtent
requests defined in TextView.

 Since TextShape adapts TextView to the Shape
interface, the drawing editor can reuse the
otherwise incompatible TextView class.

BMS Institute of Technology and MgmtDepartment of ISE

Applicability:
Use the Adapter pattern when
 you want to use an existing class, and its interface does

not match the one you need.
 you want to create a reusable class that cooperates with

unrelated or unforeseen classes, that is, classes that don't
necessarily have compatible interfaces.

 (object adapter only) you need to use several existing
subclasses, but it's impractical to adapt their interface by
subclassing every one. An object adapter can adapt the
interface of its parent class.

BMS Institute of Technology and MgmtDepartment of ISE

BMS Institute of Technology and MgmtDepartment of ISE

Participants
• Target (Shape)
- defines the domain-specific interface that Client uses.
• Client (DrawingEditor)
- Collaborates with objects conforming to the Target interface.
• Adaptee (TextView)
- defines an existing interface that needs adapting.
• Adapter (TextShape)
- adapts the interface of Adaptee to the Target interface.

BMS Institute of Technology and MgmtDepartment of ISE

Collaborations

• Clients call operations on an Adapter instance. In
turn, the adapter calls Adaptee operations that
carry out the request.

Consequences
Class and object adapters have different trade-offs.

 A class adapter
• adapts Adaptee to Target by committing to a concrete Adaptee

class. As a consequence, a class adapter won't work when we
want to adapt a class and all its subclasses.

• lets Adapter override some of Adaptee's behavior, since Adapter
is a subclass of Adaptee.

• introduces only one object, and no additional pointer indirection
is needed to get to the adaptee.

BMS Institute of Technology and MgmtDepartment of ISE

• lets a single Adapter work with many Adaptees—that is, the
Adaptee itself and all of its subclasses (if any). The Adapter can
also add functionality to all Adaptees at once.

• makes it harder to override Adaptee behavior. It will require
subclassing Adaptee and making Adapter refer to the subclass
rather than the Adaptee itself.

 An object adapter

Issues to be consider when using the Adapter pattern:
 How much adapting does Adapter do?
 Pluggable adapters: describe classes with built-in interface

adaptation.
 Using two-way adapters to provide transparency.

BMS Institute of Technology and MgmtDepartment of ISE

Implementation:

Issues to keep in mind while implementing Adapter:

1. Implementing class adapters in C++. Adapter would inherit
publicly from Target and privately from Adaptee.
• Thus adapter would be subtype of target but not of Adaptee

2. Pluggable adapters.
find a "narrow" interface for Adaptee the smallest subset of

operations that lets us do the adaptation.
The narrow interface leads to three implementation approaches:

a. Using abstract operations.
b. Using delegate objects.
c. Parameterized adapters.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

a. Using abstract operations.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

b. Using delegate objects.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

c. Parameterized adapters
• The usual way to support pluggable adapters in Smalltalk is to

parameterize an adapter with one or more blocks.
• The block construct supports adaptation without subclassing.
• A block can adapt a request, and the adapter can store a block

for each individual request.

BMS Institute of Technology and MgmtDepartment of ISE

Sample Code
A brief sketch of the implementation of class and object
adapters for the Shape and TextView.

BMS Institute of Technology and MgmtDepartment of ISE

• A class adapter uses multiple inheritance to adapt
interfaces.

• The key to class adapters is to use one inheritance
branch to inherit the interface and another branch to
inherit the implementation.

• The usual way to make this distinction in C++ is to inherit
the interface publicly and inherit the implementation
privately.

• We'll use this convention to define the Text Shape
adapter.

BMS Institute of Technology and MgmtDepartment of ISE

The BoundingBox operation converts Textview's interface
to conform to Shape's.

BMS Institute of Technology and MgmtDepartment of ISE

The object adapt uses object composition to
combine classes with different interfaces. In this
approach, the adapterText Shape maintains a

pointer to TextView.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• TextShape must initialize the pointer to the TextView
instance, and it does so in the constructor.

• It must also call operations on its TextView object
whenever its own operations are called. In this
example, assume that the client creates the TextView
object and passes it to the TextShape constructor:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Known Uses
This pattern is used in the following toolkits:
• ET++Draw,
• InterViews 2.6,
• ObjectWorks\Smalltalk,
• NeXT'sAppKit

Related Patterns:
• Bridge: has same structure but different intent.
• Decorator: enhances another object without

changing its interface.
• Proxy: representative or surrogate for another

object and does not change its interface.
• Factory Method is also a related pattern.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Pattern Name: BRIDGE
• Lets you split a giant class or a set

of closely related classes into two
separate hierarchies, abstraction
and implementation,

• which can be developed
independently of each other.

• The Bridge pattern attempts to solve it
by replacing inheritance with
delegations.

• You have to extract one of these
"dimensions" into separate class
hierarchy.

• Original classes will contain a reference
to an object of the new hierarchy,
instead of storing all of its state and
behaviors inside of one class.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Pattern Name: BRIDGE

Intent:
Decouple an abstraction from its implementation so that
the two can vary independently.
Also Known As:
Handle/Body
Use the Bridge pattern when:
- You want run-time binding of the implementation
- You want to share an implementation among multiple

objects

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Motivation:

 When an abstraction can have one of several possible
implementations, the usual way to accommodate them is to
use inheritance.

 An abstract class defines the interface to the abstraction, and
concrete subclasses implement it in different ways.

 But this approach isn't always flexible enough.
 Inheritance binds an implementation to the abstraction

permanently, which makes it difficult to modify, extend, and
reuse abstractions and implementations independently.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

 But this approach has two drawbacks:
1. It's inconvenient to extend the Window abstraction to cover

different kinds of windows or new platforms.
 But we'll have to define new classes for every kind of window.

Supporting
2. It makes client code platform-dependent.ie., makes it harder to port

the client code to other platforms.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Bridge pattern addresses these problems by
putting the Window abstraction and its
implementation in separate class hierarchies.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Applicability:
Use the Bridge pattern when
• you want to avoid a permanent binding between an

abstraction and its implementation.
• both the abstractions and their implementations should be

extensible by subclassing.
• changes in the implementation of an abstraction should

have no impact on clients; their code should not have to be
recompiled

• (C++) you want to hide the implementation of an
abstraction completely from clients.

• you have a proliferation of classes as shown earlier in the
first Motivation diagram:- need to use nested generalization

• you want to share an implementation among multiple
objects, and this fact should be hidden from the client.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Structure:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Participants :
• Abstraction (Window)

 defines the abstraction's interface.
 maintains a reference to an object of type Implementor.

• RefinedAbstraction (IconWindow)
- Extends the interface defined by Abstraction.

• Implementor (Windowlmp)
 defines the interface for implementation classes.
 This interface doesn't have to correspond exactly to Abstraction's

interface;
 in fact the two interfaces can be quite different.
 Typically the Implementor interface provides only primitive

operations, and Abstraction defines higher-level operations
based on these primitives.

• Concretelmplementor (XWindowImp, PMWindowImp)
 implements the Implementor interface and defines its

concrete implementation.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Collaborations :

• Abstraction forwards client requests to its
Implementor object.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Consequences:
The Bridge pattern has the following consequences:
1. Decoupling interface and implementation.

• An implementation is not bound permanently to an
interface.

• The implementation of an abstraction can be configured at
run-time. It's even possible for an object to change its
implementation at run-time.

• Decoupling Abstraction and Implementor eliminates
compile-time dependencies on the implementation. Does
not requires recompiling.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Consequences: contd…

2. Improved extensibility.
• You can extend the Abstraction and Implementor

hierarchies independently.
3. Hiding implementation details from clients.

• You can shield clients from implementation details,
like the sharing of implementor objects and the
accompanying reference count mechanism (if any).

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation:
Consider the following implementation issues when
applying the Bridge pattern:
1. Only one Implementor.

• where there's only one implementation, creating an
abstract Implementor class isn't necessary.

• This is a degenerate case of the Bridge pattern;
there's a one-to-one relationship between
Abstraction and Implementor.

• a change in the implementation o f a class must not
affect its existing clients— that is, they shouldn't have
to be recompiled, just relinked.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Creating the right Implementor object.
How, when, and where do you decide which Implementor class to
instantiate when there's more than one?
• If Abstraction knows about all Concretelmplementor classes, - it

can decide between them based on parameters passed to its
constructor.

• Example: A collection class supports multiple implementations
based on size of the collection particular implementation is
called

• A linked list implementation can be used for small collections
and a hash table for larger ones.

• Another approach is to choose a default implementation initially
and change it later according to usage.

• It's also possible to delegate the decision to another object
altogether.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. Sharing implementors.
• share implementations among several objects
• The Body stores a reference count that the Handle

class increments and decrements.
4. Using multiple inheritance.

• You can use multiple inheritance in C++ to combine an
interface with its implementation.

• A class can inherit publicly from Abstraction and
privately from a Concretelmplementor.

• But because this approach relies on static inheritance, it
binds an implementation permanently to its interface.
Therefore you can't implement a true Bridge with
multiple inheritance—at least not in C++

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Sample Code:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• Subclasses of Window define the different kinds of
windows the application might use, such as
application windows, icons, transient windows for
dialogs, floating palettes of tools, and so on.

• ApplicationWindow will implement DrawContents to
draw the View instance it stores:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

DrawRect extracts four coordinates from its two Point
parameters before calling the Windowlmp operation
that draws the rectangle in the window:

Concrete subclasses of Windowlmp support different window
systems. The XWindowImp subclass supports the XWindow System

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

For Presentation Manager (PM), we define a
PMWindowlmp class:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

These subclasses implement Windowlmp operations in
terms of window system primitives. For example,
DeviceRect is implemented for X as follows:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Known Uses:
• In ET++, WindowImp is called "WindowPort" and has

subclasses such as XWindowPort and SunWindowPort.
• The ET++ Window/WindowPort design extends the Bridge

pattern in that the WindowPort also keeps a reference back
to the Window.

• libg++ defines classes that implement common data
structures, such as Set, LinkedSet, HashSet, LinkedList, and
HashTable.

• NeXT's AppKit uses the Bridge pattern in the implementation
and display of graphical images.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Related Patterns:

1. An Abstract Factory can create and configure a
particular Bridge.

2. The Adapter pattern is geared toward making
unrelated classes work together.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

COMPOSITE : Object Structural patterns

Intent:
• Compose objects into tree structures to represent part-

whole hierarchies.
• Composite lets clients treat individual objects and

compositions of objects uniformly.

Motivation:
• Graphics applications like drawing editors and schematic

capture systems let users build complex diagrams out of
simple components.

• Example

composite pattern.webm

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Problem:
• Code that uses these classes must treat primitive and container

objects differently,
• Even if most of the time the user treats them identically. Having to

distinguish these objects makes the application more complex.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Solution:

The Composite pattern describes how to use recursive
composition so that clients don't have to make this distinction.

• The key to the Composite pattern is an abstract class (Graphic) that
represents both primitives and their containers.

• Graphic declares operations like Draw that are specific to graphical
objects.

• It also declares operations that all composite objects share, such as
operations for accessing and managing its children.

• The subclasses Line, Rectangle, and Text define primitive graphical
objects.

• Since primitive graphics have no child graphics, none of these
subclasses implements child-related operations.

• The Picture class defines an aggregate of Graphic objects.
• Because the Picture interface conforms to the Graphic interface,

Picture objects can compose other Pictures recursively.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The following diagram shows a typical composite
object structure of recursively composed Graphic
objects:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Applicability:

Use the Composite pattern when
• you want to represent part-whole hierarchies of

objects.
• you want clients to be able to ignore the difference

between compositions of objects and individual
objects. Clients will treat all objects in the composite
structure uniformly.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Structure:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

A typical Composite object structure might look
like this:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Participants:
• Component (Graphic)
 declares the interface for objects in the composition.
 implements default behavior for the interface common to all classes, as

appropriate.
 declares an interface for accessing and managing its child components.
 (optional) defines an interface for accessing a component's parent in the

recursive structure, and implements it if that's appropriate.
• Leaf (Rectangle, Line, Text, etc.)
 represents leaf objects in the composition. A leaf has no children.
 defines behavior for primitive objects in the composition.
• Composite (Picture)
 defines behavior for components having children.
 stores child components.
 implements child-related operations in the Component interface.
• Client
 manipulates objects in the composition through the Component

interface.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Collaborations:

• Clients use the Component class interface to interact
with objects in the composite structure.

• If the recipient is a Leaf, then the request is handled
directly.

• If the recipient is a Composite, then it usually forwards
requests to its child components,

• possibly performing additional operations before
and/or after forwarding.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Consequences:

I. Defines class hierarchies
• Defines class hierarchies consisting of primitive objects and

composite objects.
• Primitive objects can be composed into more complex objects,

which in turn can be composed, and so on recursively.
• Wherever client code expects a primitive object, it can also take a

composite object.

II. makes the client simple.
• Clients can treat composite structures and individual objects

uniformly.
• Clients normally don't know (and shouldn't care)whether they're

dealing with a leaf or a composite component.
• This simplifies client code, because it avoids having to write tag-

and-case-statement-style functions over the classes that define
the composition.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Consequences:

III. makes it easier to add new kinds o f components.
• Newly defined Composite or Leaf subclasses work automatically

with existing structures and client code.
• Clients don't have to be changed for new Component classes.

IV. can make your design overly general.
• The disadvantage of making it easy to add new components is

that it makes it harder to restrict the components of a composite.
• Sometimes you want a composite to have only certain

components.
• With Composite, you can't rely on the type system to enforce

those constraints for you.
• You'll have to use run-time checks instead.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation:

There are many issues to consider when implementing the Composite
pattern:

1. Explicit parent references.
2. Sharing components.
3. Maximizing the Component interface.
4. Declaring the child management operations.
5. Should Component implement a list of Components?
6. Child ordering.
7. Caching to improve performance.
8. Who should delete components?
9. What's the best data structure for storing components?

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

1. Explicit parent references.

Implementation: Contd…

• Maintaining references from child components to their parent can
simplify the traversal and management.

• The parent reference simplifies moving up the structure and deleting a
component.

• Parent references also help support the Chain of Responsibility (223)
pattern.

• Usually parent reference defined in the Component class.
• Leaf and Composite classes can inherit the reference and the operations

that manage it.
• With parent references, it's essential to maintain the invariant of all

children.
• The easiest way to ensure this is to change a component's parent only

when it's being added or removed from a composite.
• If this can be implemented once in the Add and Remove operations of

the Composite class, then it can be inherited by all the subclasses, and
the invariant will be maintained automatically.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Sharing components.

• Useful to share components for ex, to reduce storage
requirements.

• when a component can have no more than one parent, sharing
components becomes difficult.

• Solution:
• children to store multiple parents :- But this can lead to

ambiguities as a request propagates up the structure.
• The Flyweight(195) pattern shows how to rework a design

to avoid storing parents altogether
• children can avoid sending parent requests by externalizing

some or all of their state.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. Maximizing the Component interface.

• Goals of the Composite pattern is to make clients unaware of
the specific Leaf or Composite classes they're using.-> This
could be achieved by defining more common operations for
Composite and Leaf classes as possible.

• The Component class usually provides default
implementations for these operations, and Leaf and
Composite subclasses will override them.

• This sometimes makes operations to be defined that doesn't
make sense for subclasses.

• Define a default operation for child access in the Component
class that never returns any children.

• Leaf classes can use the default implementation, but
Composite classes will reimplement it to return their children.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

4. Declaring the child management operations.
• The Composite class implements the Add and Remove operations for

managing children,
• An important issue in the Composite pattern is which classes declare

these operations in the Composite class hierarchy.
• Should we declare these operations in the Component and make them

meaningful for Leaf classes, or should we declare and define them only
in Composite and its subclasses?

The decision involves a trade-off between safety and transparency:
1. Defining the child management interface at the root of the class

hierarchy gives you transparency, bcz you can treat all components
uniformly.=> It costs you safety, because clients may try to do
meaningless things like add and remove objects from leaves.

2. Defining child management in the Composite class gives you safety,
because any attempt to add or remove objects from leaves will be
caught at compile-time in a statically typed language like C++. =>But it
lose transparency, because leaves and composites have different
interfaces.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• One approach is to declare an operation Composite
*GetComposite () in the Component class.

• Component provides a default operation that returns a null
pointer.

• The Composite class redefines this operation to return itself
through the this pointer:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

5. Should Component implement a list of Components?

• Usually we define the set of children as an instance variable
in the Component class where the child access and
management operations are declared.

• But putting the child pointer in the base class incurs a space
penalty for every leaf, even though a leaf never has children.

• This is worthwhile only if there are relatively few children in
the structure.

• That is have few children

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

6. Child ordering.

• Many designs specify an ordering on the children of Composite.
• Graphics example, ordering may reflect front-to-back ordering.
• If Composites represent parse trees, then compound

statements can be instances of a Composite whose children
must be ordered to reflect the program.

• When child ordering is an issue, one must design child access
and management interfaces carefully to manage the sequence
of children.

• The Iterator (257)pattern can guide you in this.

7. Caching to improve performance.
• To traverse or search compositions frequently, the Composite class

can cache traversal or search information about its children.
• The Composite can cache actual results or just information that lets

it short-circuit the traversal or search.
• Changes to a component will require invalidating the caches of its

parents.
• This works best when components know their parents.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

8. Who should delete components?
• In languages without garbage collection, it's usually best to

make a Composite responsible for deleting its children when
it's destroyed.

• An exception to this rule is when Leaf objects are immutable
and thus can be shared.

9. What's the best data structure for storing components?
• Composites may use a variety of data structures to store their

children, including linked lists, trees, arrays, and hash tables.
• The choice of data structure depends (as always) on efficiency.
• It isn't even necessary to use a general-purpose data structure at all.
• Sometimes composites have a variable for each child, although this

requires each subclass of Composite to implement its own
management interface.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Sample Code
• Equipment class defines an interface for all equipment in the

part-whole hierarchy.
• Equipment such as computers and stereo components are

often organized into part-whole or containment hierarchies.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• Subclasses of Equipment might include Leaf classes that
represent disk drives, integrated circuits, and switches:

CompositeEquipment is the base
class for equipment that contains
other equipment. It's also a
subclass of Equipment.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

A default implementation of NetPrice might
use Createlterator to sum the net prices of the
subequipment.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Known Uses
• The original View class of Smalltalk Model/View/Controller [

KP88] was a Composite,
• User interface toolkits and frameworks
• ET++, Interviews, Graphics, Glyphs

Related Patterns
• Chain of Responsibility (223).
• Decorator (175) : When decorators and composites are used

together, they will usually have a common parent class. So
decorators will have to support the Component interface with
operations like Add, Remove, and GetChild.

• Flyweight (195) lets you share components, but they can no
longer refer to their parents.

• Iterator (257)can be used to traverse composites.
• Visitor(331) localizes operations and behavior that would

otherwise be distributed across Composite and Leaf classes.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

DECORATOR: an Object structural pattern
• Intent:
Attach additional responsibilities to an object

dynamically.
Decorators provide a flexible alternative to subclassing

for extending functionality.

• Also Known As
Wrapper

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• Motivation:
 Sometimes we want to add responsibilities to

individual objects, not to an entire class.
 A graphical user interface toolkit, for example,

should let you add properties like borders or
behaviors like scrolling to any user interface
component.

 One way to add responsibilities is with inheritance
 Inheriting a border from another class puts a border

around every subclass instance. This is inflexible,
because the choice of border is made statically.

 A client can't control how and when to decorate the
component with a border.

A more flexible approach is to enclose the component in
another object that adds the border. The enclosing object
is called a decorator.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Example: The following object diagram shows how to
compose a TextView object with BorderDecorator and
ScrollDecorator objects to produce a bordered, scrollable
text view:

• The decorator conforms to the interface of the component
it decorates so that its presence is transparent to the
component's clients.

• The decorator forwards requests to the component and
may perform additional actions (such as drawing a border)
before or after forwarding.

• Transparency lets you nest decorators recursively, thereby
allowing an unlimited number of added responsibilities.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The ScrollDecorator and BorderDecorator classes
are subclasses of Decorator, an abstract class for
visual components that decorate other visual
components.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Applicability
Use Decorator
• to add responsibilities to individual objects
dynamically and transparently, that is, without affecting
other objects.
• for responsibilities that can be withdrawn.
• when extension by subclassing is impractical.
Sometimes a large number of independent

extensions are possible and would produce an
explosion of subclasses to support ever y
combination.

Or a class definition maybe hidden
or otherwise unavailable for subclassing.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Structure

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Participants
• Component (VisualComponent)
- defines the interface for objects that can have
responsibilities added to them dynamically.
• ConcreteComponent (TextView)
- defines an object to which additional responsibilities can
be attached.
• Decorator
- maintains a reference to a Component object and

defines an interface that conforms to Component's
interface.

• ConcreteDecorator (BorderDecorator, ScrollDecorator)
- adds responsibilities to the component.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Collaborations

• Decorator forwards requests to its
Component object.

• It may optionally perform additional
operations before and after forwarding the
request.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Consequences
The Decorator pattern has at least two key benefits and two
liabilities:
1. More flexibility than static inheritance.

 The Decorator pattern provides a more flexible way to add
responsibilities to objects

 With decorators, responsibilities can be added and
removed at run-time simply by attaching and detaching
them.

 In contrast, inheritance requires creating a new class for
each additional responsibility:- Which increases number
of classes and complexity of a system

 Providing different Decorator classes for a specific
Component class lets you mix and match responsibilities.

 Decorators also make it easy to add a property twice

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Avoids feature-laden classes high up in the hierarchy
Decorator offers a pay-as- you-go approach to adding

responsibilities.
Define a simple class and add functionality incrementally

with Decorator objects.
Functionality can be composed from simple pieces. A s a

result, an application needn't pay for features it doesn't
use.

Easy to define new kinds of Decorators independently
from the classes of objects they extend, even for
unforeseen extensions.

Extending a complex class tends to expose details of
responsibilities

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. A decorator and its component aren't identical.
A decorator acts as a transparent enclosure.
 From object identity point of view, a decorated

component is not identical to the component itself.
 Shouldn't rely on object identity when you use

decorators.
4. Lots of little objects.

A design that uses Decorator often results in
systems composed of lots of little objects that all
look alike.

 The objects differ only in the way they are
interconnected, not in their class or in the value of
their variables.

 These systems are easy to customize, but can be
hard to learn and debug.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation
Several issues should be considered when applying the
Decorator pattern:

1. Interface conformance.
2. Omitting the abstract
3. Keeping Component classes lightweight.
4. Changing the skin of an object versus changing

its guts

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

1. Interface conformance.
A decorator object's interface must conform to

the interface of the component it decorates.
 ConcreteDecorator classes must therefore

inherit from a common class (at least in C++).

2. Omitting the abstract Decorator class.

No need to define an abstract Decorator class when
only need to add one responsibility.

Dealing with an existing class hierarchy rather than
designing a new one.=> can merge Decorator's
responsibility for forwarding requests to the
component into the ConcreteDecorator.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

 Keep the common class lightweight; that is, it should focus on
defining an interface, not on storing data.

 The definition of the data representation should be deferred to
subclasses;

 Otherwise the complexity of the Component class might make the
decorators too heavyweight.

 Putting a lot of functionality into Component also increases the
probability that concrete subclasses will pay for features they don't
need.

3. Keeping Component classes lightweight

4. Changing the skin of an object versus changing its guts
 A decorator as a skin over an object that changes its behavior.
 An alternative is to change the object's guts. Ex: Strategy (315)

pattern for changing the guts.
 Since the Decorator pattern only changes a component from the

outside, the component doesn't have to know anything about its
decorators; that is, the decorators are transparent to the
component:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

With strategies, the component itself knows about possible
extensions. So it has to reference and maintain the corresponding
strategies:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Sample Code

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

For each operation in
VisualComponent's interface,
Decorator defines a default
implementation
that passes the request on to -
component:

Subclasses of Decorator define specific decorations

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Known Uses

Many object-oriented user interface toolkits use
decorators to add graphical embellishments to
widgets.

Examples: Interviews, ET++, the ObjectWorks\Sma lltalkclass library
• The DebuggingGlyph from Interviews
• The PassivityWrapper from ParcPlace Smalltalk.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Decorator pattern gives us an elegant way to add
these responsibilities to streams. The diagram below
shows one solution to the problem:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Related Patterns

Adapter (139) :
 A decorator is different from an adapter in that a decorator

only changes an object's responsibilities, not its interface;
 an adapter will give an object a completely new interface.

Composite (163) :
 A decorator can be viewed as a degenerate composite with

only one component.
 However, a decorator adds additional responsibilities—it

isn't intended for object aggregation.
Strategy (315) :

 A decorator lets you change the skin of an object;
 a strategy lets you change the guts. These are two

alternative ways of changing an object.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

FACADE : Objects structural patterns
Intent
Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem
easier to use.
Motivation
• Structuring a system into subsystems helps reduce complexity. A

common design goal is to minimize the communication and
dependencies between subsystems.

• One way to achieve this goal is to introduce a facade object that
provides a single, simplified interface to the more general facilities
of a subsystem.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• Example : a programming environment that gives applications
access to its compiler subsystem. This subsystem contains classes
such as Scanner,Parser, ProgramNode, BytecodeStream, and
ProgramNodeBuilder that implement the compiler.

• Most clients of a compiler generally don't care about details like
parsing and code generation; they merely want to compile some
code

• To provide a higher-level interface that can shield clients from
these classes, the compiler subsystem also includes a Compiler

class=> defines a unified interface to the compiler's
functionality.

• The Compiler class acts as a façade=>
 Offers clients a single, simple interface to the compiler

subsystem.
 It glues together the classes that implement compiler

functionality without hiding them completely

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Applicability

Use the Façade pattern when
1. You want to provide a simple interface to a complex subsystem

 Subsystems often get more complex as they evolve.
 Most patterns, when applied, result in more and smaller

classes.
 This makes the subsystem more reusable and easier to

customize, but it also becomes harder to use for clients that
don't need to customize it.

 A facade can provide a simple default view of the subsystem
that is good enough for most clients.

 Only clients needing more customizability will need to look
beyond the facade.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Many dependencies between clients and the
implementation classes of an abstraction.
 Introduce a facade to decouple the subsystem from clients

and other subsystems,
 Thereby promoting subsystem independence and

portability.
3. You want to layer your subsystems.

 Use a facade to define an entry point to each subsystem
level.

 If subsystems are dependent, then you can simplify the
dependencies between them by making them
communicate with each other solely through their
facades.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Structure

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Participants
• Facade (Compiler)
- knows which subsystem classes are responsible for a request.
- delegates client requests to appropriate subsystem objects.
• subsystem classes (Scanner, Parser, ProgramNode, etc.)
- implement subsystem functionality.
- handle work assigned by the Facade object.
- have no knowledge of the facade; that is they keep no references to
it.

Collaborations
• Clients communicate with the subsystem by sending requests to
Facade,
• Which forwards them to the appropriate subsystem object(s).
• Although the subsystem objects perform the actual work, the facade

may have to do work of its own to translate its interface to subsystem
interfaces.

• Clients that use the facade don't have to access its subsystem objects
directly.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Consequences

The Facade pattern offers the following benefits:

1. It shields clients from subsystem components, thereby reducing
the number of objects that clients deal with and making the
subsystem easier to use.
2. It promotes weak coupling between the subsystem and its clients.
Often the components in a subsystem are strongly coupled.
Weak coupling lets you vary the components of the subsystem
without affecting its clients.
3. It doesn't prevent applications from using subsystem classes if they
need to. Thus you can choose between ease of use and generality.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation

Consider the following issues when implementing a facade:

1. Reducing client-subsystem coupling.
• The coupling between clients and the subsystem can be reduced

even.
• Make Facade an abstract class with concrete subclasses for

different implementations of a subsystem.
• Then clients can communicate with the subsystem through the

interface of the abstract Facade class.
• This abstract coupling keeps clients from knowing which

implementation of a subsystem is used.
• An alternative to subclassing is to configure a Facade object with

different subsystem objects.
• To customize the facade, simply replace one or more of its

subsystem objects.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Public versus private subsystem classes

• A subsystem is analogous to a class => both have
interfaces, and both encapsulate something—

• a class encapsulates state and operations,
• while a subsystem encapsulates classes.
• Just as similar to public and private interfaces, consider

public and private interfaces to subsystems.
• The public interface to a subsystem consists of classes

that all clients can access; the private interface is just
for subsystem extenders.

• The Facade class is part of the public interface,

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Sample Code
The Scanner class takes a stream of characters and produces a
stream of tokens, one token at a time.

The class Parser uses a ProgramNodeBuilder to construct a parse
tree from a Scanner's tokens.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Parser calls back on ProgramNodeBuilder to build the parse
tree incrementally. These classes interact according to the
Builder (97) pattern.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The parse tree is made up of instances of ProgramNode
subclasses such as StatementNode, ExpressionNod e, and
so forth

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Known Uses

• The compiler example in the Sample Code section was
inspired by the Object- Works\Smalltalk compiler system

• In the ET++ application framework=> an application can
have built-in browsing tools for inspecting its objects at
run-time. These browsing tools are implemented in a
separate subsystem that includes a Facade class called
"ProgrammingEnvironment.“

• The Choices operating system=> uses facades to compose
many frameworks into one. The key abstractions in
Choices are processes, storage, and address spaces.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Related Patterns

Abstract Factory (87)
 can be used with Facade to provide an interface for creating

subsystem objects in a subsystem-independent way.
 Abstract Factory can also be used as an alternative to Facade to

hide platform-specific classes.

Mediator (273) is similar to Façade.
 Mediator's purpose is to abstract arbitrary communication

between colleague objects, often centralizing functionality that
doesn't belong in any one o f them.

 A mediator's colleagues are aware of and communicate with the
mediator instead of communicating with each other directly.

 In contrast, a façade merely abstracts the interface to subsystem
objects to make them easier to use;

 It doesn't define new functionality, and subsystem classes don't
know about it.

 Thus Facade objects are often Singletons(127).

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

FLYWEIGHT is a Object structural Pattern:
Intent :
Use sharing to support large numbers of fine-grained objects
efficiently.
Motivation :
 Some applications could benefit from using objects throughout their

design, but a naive implementation would be prohibitively expensive.
 For example, Document editor implementations have text formatting

and editing facilities that are modularized to some extent.
 Object-oriented document editors typically use objects to represent

embedded elements like tables and figures.
 Uses an object for each character in the document=>Promotes flexibility at

the finest levels in the application.
 Characters and embedded elements could then be treated uniformly with

respect to how they are drawn and formatted.
 The application could be extended to support new character sets without

disturbing other functionality.
 The application's object structure could mimic the document's physical

structure.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The drawback of such a design is its cost.
 Even moderate-sized documents may require hundreds of thousands of character

objects, which will consume lots of memory and may incur unacceptable run-time
overhead.

 The Flyweight pattern describes how to share objects to allow their use at fine
granularities without prohibitive cost.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

 A flyweight is a shared object that can be used in multiple
contexts simultaneously.

 The flyweight acts as an independent object in each context—it's
indistinguishable from an instance of the object that's not shared.

 Flyweights cannot make assumptions about the context in which
they operate.

 The key concept is the distinction between intrinsic and extrinsic
state.
 Intrinsic state is stored in the flyweight; it consists of

information that 's independent of the flyweight's context,
making it sharable.

 Extrinsic state depends on and varies with the flyweight's
context and therefore can't be shared.

 Client objects are responsible for passing extrinsic state to the
flyweight when it needs it.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

 A document editor can create a flyweight for each letter of the
alphabet.

 Each flyweight stores a character code, but its coordinate position in
the document and its typographic style can be determined from the
text layout algorithms and formatting commands in effect wherever
the character appears.

 The character code is intrinsic state, while the other information is
extrinsic.

 Logically there is an object for every occurrence of a given
character in the document

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

 Physically, there is one shared flyweight object per
character,

 It appears in different contexts in the document structure.
 Each occurrence of a particular character object refers to

the same instance in the shared pool of flyweight objects:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

 Glyph is the abstract class
for graphical objects, some
of which may be flyweights.

 Operations that may
depend on extrinsic state
have it passed to them as a
parameter.

 For example, Draw and
Intersects must know which
context the glyph is in
before they can do their
job.

 A flyweight representing the letter "a" only stores the corresponding character
code;

 it doesn't need to store its location or font.
 Clients supply the context dependent information that the flyweight needs to

draw itself

Class Structure

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Applicability:

Apply the Flyweight pattern when all of the following are
true:

• An application uses a large number of objects.
• Storage costs are high because of the sheer quantity of objects.
• Most object state can be made extrinsic.
• Many groups of objects may be replaced by relatively few shared
objects once extrinsic state is removed.
• The application doesn't depend on object identity. Since flyweight
objects may be shared, identity tests will return true for
conceptually distinct objects.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Structure

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The following diagram shows how the flyweights are shared:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Participants

1. Flyweight (Glyph)
 declares an interface through which flyweights can receive and act on

extrinsic state.
2. ConcreteFlyweight (Character)

 implements the Flyweight interface and adds storage for intrinsic state, if
any.

 A ConcreteFlyweight object must be sharable.
 Any state it stores must be intrinsic; it must be independent of the

ConcreteFlyweight object's context.
3. UnsharedConcreteFlyweight (Row ,Column)

 not all Flyweight subclasses need to be shared.
 The Flyweight interface enables sharing; it doesn't enforce it.
 It's common for UnsharedConcrete- Flyweight objects to have

ConcreteFlyweight objects as children at some level in the flyweight
object structure (as the Row and Column classes have).

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

4. FlyweightFactory
 creates and manages flyweight objects.
 ensures that flyweights are shared properly. When a client requests

a flyweight,
 the FlyweightFactory object supplies an existing instance or creates

one, if none exists.
5. Client

 maintains a reference to flyweight(s).
 computes or stores the extrinsic state of flyweight(s).

Participants contd…

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Collaborations

 State that a flyweight needs to function must be characterized
as either intrinsic or extrinsic.

 Intrinsic state is stored in the ConcreteFlyweight object;
 Extrinsic state is stored or computed by Client objects.
 Clients pass this state to the flyweight when they invoke its

operations.
• Clients should not instantiate ConcreteFlyweights directly.
• Clients must obtain ConcreteFlyweight objects exclusively from

the FlyweightFactory object to ensure they are shared properly.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Consequences
 Flyweights may introduce run-time costs associated with

transferring, finding, and/or computing extrinsic state, especially if
it was formerly stored as intrinsic state.

 such costs are offset by space savings, which increase as more
flyweights are shared.

Storage savings are a function of several factors:
• The reduction in the total number of instances that comes from

sharing
• The amount of intrinsic state per object
• Whether extrinsic state is computed or stored.

The more flyweights are shared, the greater the storage savings. The
savings increase with the amount of shared state.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation

Consider the following issues when implementing the Flyweight
pattern:

1. Removing extrinsic state.
2. Managing shared objects.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

1. Removing extrinsic state.

• Removing extrinsic state won't help reduce storage costs if there
are as many different kinds of extrinsic state as there are objects
before sharing.

• Ideally, extrinsic state can be computed from a separate object
structure, one with far smaller storage requirements.

• for example, we can store a map of typographic information in a
separate structure rather than store the font and type style with
each character object.

• When a character draws itself, it receives its typographic attributes
as a side-effect of the draw traversal

• Storing this information externally to each character object is far
more efficient than storing it internally.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Managing shared objects.

• Because objects are shared, clients shouldn't instantiate them
directly.

• FlyweightFactory lets clients locate a particular flyweight.
• FlyweightFactory objects often use an associative store to let

clients look up flyweights of interest.
• For example, the flyweight factory in the document editor can

keep a table of flyweights indexed by character codes.
• The manager returns the proper flyweight given its code,

creating the flyweight if it does not already exist.
• Sharability also implies some form of reference counting or

garbage collection to reclaim a flyweight's storage when it's no
longer needed.

• If the number of flyweights is fixed and small=> flyweights are
worth keeping around permanently.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Sample Code
• Logically, glyphs (base class)are Composites that have

graphical attributes and can draw themselves.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Character subclass just stores a character code:

• To keep from allocating space for a font attribute in every glyph, we'll
store the attribute extrinsically in a GlyphContext object.

• GlyphContext acts as a repository of extrinsic state.
• Any operation that needs to know the glyph's font in a given context will

have a GlyphContext instance passed to it as a parameter. The
• operation can then query the GlyphContext for the font in that context.
• The context depends on the glyph's location in the glyph structure.
• Therefore Glyph's child iteration and manipulation operations must

update the GlyphContext whenever they're used.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• GlyphContext must be kept informed of the current position in the glyph
structure during traversal.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Consider the following excerpt from a glyph composition:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The BTree structure for font information might look like

• Interior nodes define ranges of glyph indices.
• BTree is updated in response to font changes and whenever glyphs are

added to or removed from the glyph structure.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

For example, assuming we're at index 102 in the traversal, the
following code sets the font of each character in the word
"expect" to that of the surrounding text (that is, times12, an
instance of Font for 12-point Times Roman):

The new BTree
structure (with
changes shown in
black) looks like

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Class Glyph Factory instantiates Character and
other kinds of glyphs.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Known Uses

1. Interviews 3.0:
• Its developers built a powerful document editor called Doc as a

proof of concept [CL92]. Doc uses glyph objects to represent
each character in the document.

• Only position is extrinsic, making Doc fast. Documents are
represented by a class Document, which also acts as the
FlyweightFactory.

2. ET++:
• uses flyweights to support look-and-feel independence.
• The look-and-feel standard affects the layout of user interface

elements.
• A widget delegates all its layout and drawing behavior to a

separate Layout object. Changing the Layout object changes the
look and feel, even at run-time.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Related Patterns
• The Flyweight pattern is often combined with the Composite

(163) pattern to implement a logically hierarchical structure
in terms of a directed-acyclic graph with shared leaf nodes.

• It's often best to implement State (305) and Strategy
(315) objects as flyweights

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

PROXY: a Object Structural pattern
Intent
Provide a surrogate or placeholder for another object to control
access to it.

Also Known As
Surrogate
Motivation
• One reason for controlling access to an object is to defer the full

cost of its creation and initialization until we actually need to use it.
• Example: Consider a document editor that can embed graphical

objects in a document.
• Some graphical objects, like large raster images, can be expensive

to create. But opening a document should be fast, so we should
avoid creating all the expensive objects at once when the
document is opened.

• Because not all of these objects will be visible in the document at
the same time.

• creating each expensive object on demand, which in this case
occurs when an image becomes visible.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Solution: an image proxy, that acts as a stand-in for
the real image. The proxy acts just like the image and takes care
of instantiating it when it's required.

• The image proxy creates the real image only when the document
editor asks it to display itself by invoking its Draw operation.

• The proxy forwards subsequent requests directly to the image. It
must therefore keep a reference to the image after creating it.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• Let's assume that images are stored in separate files.
• we can use the file name as the reference to the real object.
• The proxy also stores its extent, that is, its width and height.
• The extent lets the proxy respond to requests for its size from

the formatter without actually instantiating the image.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• The document editor accesses embedded images through the
interface defined by the abstract Graphic class.

• ImageProxy is a class for images that are created on demand.
• ImageProxy maintains the file name as a reference to the image

on disk.
• The file name is passed as an argument to the ImageProxy

constructor.
• ImageProxy also stores the bounding box of the image and a

reference to the real Image instance.
• This reference won't be valid until the proxy instantiates the real

image.
• The Draw operation makes sure the image is instantiated before

forwarding it the request.
• GetExtent forwards the request to the image only if it's

instantiated; otherwise ImageProxy returns the extent it stores.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Applicability
Proxy is applicable whenever there is a need for a more versatile
or sophisticated reference to an object than a simple pointer.
Common situations in which the Proxy pattern is applicable:
1. A remote proxy provides a local representative for an object in a

different address space. NEXTSTEP [Add 94]uses the class NXProxy for
this purpose. Coplien [Cop 92]calls this kind of proxy an "Ambassador.“

2. A virtual proxy creates expensive objects on demand.
3. A protection proxy controls access to the original object. Protection

proxies are useful when objects should have different access rights.
Ex: KernelProxies in the Choices operating system [CIRM93] provide
protected access to operating system objects.
4. A smart reference is a replacement for a bare pointer that performs

additional actions when an object is accessed. Typical uses include
• Counting the number of references to the real object so that it can be freed

automatically when there are no more references.
• Loading a persistent object into memory when it's first referenced.
• Checking that the real object is locked before it's accessed to ensure that

no other object can change it.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Structure

Object diagram of a proxy structure at run-time

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Participants
1. Proxy (ImageProxy)

• maintains a reference that lets the proxy access the real subject.
Proxy may refer to a Subject if the RealSubject and Subject
interfaces are the same.

• Provides an interface identical to Subject's so that a proxy can by
substituted for the real subject.

• Controls access to the real subject and may be responsible for
creating and deleting it.

Other responsibilities depend on the kind of proxy:
• remote proxies are responsible for encoding a request and its
arguments and for sending the encoded request to the real subject in
a different address space.
• virtual proxies may cache additional information about the real
subject so that they can postpone accessing it. For example, the
ImageProxy from the Motivation caches the real image's extent.
• protection proxies check that the caller has the access permissions
required to perform a request.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Subject (Graphic)
• Defines the common interface for RealSubject and

Proxy so that a Proxy can be used anywhere a
RealSubject is expected.

3. RealSubject (Image)
• defines the real object that the proxy represents.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Collaborations

• Proxy forwards requests to RealSubject when appropriate,
depending on the kind of proxy.

Consequences
The Proxy pattern introduces a level of indirection when accessing
an object. The additional indirection has many uses, depending on
the kind of proxy:

1. A remote proxy can hide the fact that an object resides in a different
address space.

2. A virtual proxy can perform optimizations such as creating an object on
demand.

3. Both protection proxies and smart references allow additional
housekeeping tasks when an object is accessed.

There's another optimization that the Proxy pattern can hide from the
client. It's called copy-on-write , and it's related to creation on demand.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• There's another optimization that the Proxy pattern can hide from
the client. It's called copy-on-write, and it's related to creation on
demand.

• Copying a large and complicated object can be an expensive
operation.

• If the copy is never modified, then there's no need to incur this
cost.

• By using a proxy to postpone the copying process, we ensure that
we pay the price of copying the object only if it's modified.

• To make copy-on-write work, the subject must be reference
counted.

• Copying the proxy will do nothing more than increment this
reference count. Only when the client requests an operation that
modifies the subject does the proxy actually copy it.

• In that case the proxy must also decrement the subject's reference
count.

• When the reference count goes to zero, the subject gets deleted.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation
The Proxy pattern can exploit the following language features:

1. Overloading the member access operator in C++.
2. Using doesNotUnderstand in Smalltalk
3. Proxy doesn't always have to know the type of real subject.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

1. Overloading the member access operator in C++.
• C++ supports overloading operator->, the member access
operator. Overloading this operator lets you perform additional work
whenever an object is dereferenced.
• use this technique to implement a virtual proxy called ImagePtr.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The overloaded -> and * operators use Loadlmage to return
_image to callers (loading it if necessary).

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Using doesNotUnderstand in Smalltalk
• Smalltalk calls doesNotUnderstand: aMessage when a client

sends a message to a receiver that has no corresponding
method.

• The Proxy class can redefine doesNotUnderstand so that the
message is forwarded to its subject.

• To ensure that a request is forwarded to the subject and not just
absorbed by the proxy silently, you can define a Proxy class that
doesn't understand any messages.

• Smalltalk lets you do this by defining Proxy as a class with no
superclass

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. Proxy doesn't always have to know the type of real
subject.

• If a Proxy class can deal with its subject solely through an abstract
interface, then there's no need to make a Proxy class for each
RealSubject class;

• the proxy can deal with all RealSubject classes uniformly.
• But if Proxies are going to instantiate RealSubjects (such as in a

virtual proxy), then they have to know t he concrete class.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Sample Code

1. A virtual proxy. The Graphic class defines the interface for
graphical objects:

The Image class implements the
Graphic interface to display image files.
Image overrides HandleMouse to let
users resize the image interactively.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

ImageProxy has the same interface as Image:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The constructor saves a local copy of the name of the file
that stores the image, and it initializes -extent and -image:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Proxies that use doesNotUnderstand. You can make generic proxies
in Smalltalk by defining cl asses whose superclass is nil and defining the
doesNotUnderstand: method to handle messages.

The following method assumes the proxy has a real Subject method that returns
its real subject.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Known Uses
• The virtual proxy example from ET++ text building block

classes.

• NEXTSTEP: uses proxies (instances of class NXProxy)as local
representatives for objects that may be distributed.

 Server creates proxies for remote objects when
clients request them.

 On receiving a message, the proxy encodes it
along with its arguments and then forward s the
encoded message to the remote subject.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Related Patterns

1. Adapter (139) :
 An adapter provides a different interface to the object it adapts. In

contrast,
 a proxy provides the same interface as its subject.
 a proxy used for access protection might refuse to perform an

operation that the subject will perform ,so its interface may be
effectively a subset of the subject's.

2. Decorator (175):
 Although decorators can have similar implementations as proxies,

decorators have a different purpose.
 A decorator adds one or more responsibilities to an object, whereas a

proxy controls access to an object.

BMS Institute of Technology and MgmtDepartment of ISE

Module-4
Interactive systems and the MVC
architecture(Chapter11,Book1)

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• Introduction
• The MVC architectural pattern
• Analyzing a simple drawing program
• Designing the system
• Designing of the subsystems
• Getting into implementation
• Implementing undo operation
• Drawing incomplete items
• Adding a new feature
• Pattern based solutions.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The model–view–controller architecture

The model view controller is a relatively old pattern that
was originally introduced in the Smalltalk programming
language.

The MVC Architectural Pattern

The pattern divides
the application into
three subsystems:
1. model
2. view
3. controller.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• The pattern separates the application object or the data, which is
termed the Model,

• from the manner in which it is rendered to the end-user (View)
• from the way in which the end-user manipulates it (Controller).

MVC pattern helps produce highly
cohesive modules with a low
degree of coupling.

MVC provides a powerful way to organise systems that
support multiple presentations of the same information.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

1. The model,
• which is a relatively passive object,
• stores the data.
• Any object can play the role of model.

2. The view
• Renders the model into a specified format,
• Typically something that is suitable for interaction with the end

user.
• For instance, if the model stores information about bank

accounts,
• A certain view may display only the number of accounts and the

total of the account balances.
3. The controller

• captures user input
• When necessary issues method calls on the model to modify the

stored data.
• When the model changes, the view responds by appropriately

modifying the display.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

It is important to distinguish the UI from the rest of the
system:
• Beginners often mistake the UI for the view. Why?

Two reasons:
 In most systems, due to the nature of the desired look and

feel from end users.
 The technologies available, there is a single window in

which the entire application is housed.
• There has to be a common subsystem that provides the

functionality needed both for the view and the user interface.
• Other source of potential confusion is that the UI presents to

the user an image of how the system looks, and this can be
mistakenly construed as the view.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

MVC in the abstract sense:
• Architecture of the system lies behind the UI;
• Both the view and the controller are subsystems at the

same level of abstraction that employ components of the
UI to accomplish their tasks.

• But in practice: the view and the UI are contained in a
common subsystem

• The view subsystem is therefore responsible for
 all the look and feel issues,

 whether they arise from a human–computer interaction
perspective (e.g., kinds of buttons being used)

 from issues relating to how we render the model.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

 User-generated events may cause a controller to change the model,
or view, or both.

For example, suppose that the model stored the text that is being
edited by the end-user.

 When the user deletes or adds text, the controller captures the
changes and notifies the model.

 The view, which observes the model, then refreshes its display,
 In this case, user-input caused a change to both the model and

the view.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

On the other hand, consider a user scrolling the data.
 Since no changes are made to the data itself, the model does

not change and need not be notified.
 But the view now needs to display previously-hidden data,
 which makes it necessary for the view to contact the model

and retrieve information.
 More than one view–controller pair may be associated with

a model.
 Whenever user input causes one of the controllers to notify

changes to the model, all associated views are automatically
updated.

 It could also be the case that the model is changed not via
one of the controllers, but through some other mechanism.

 In this case, the model must notify all associated views of the
changes.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The view–model is similar to that of a subject–observer.
 The model, as the subject, maintains references to all of

the views that are interested in observing it.
 Whenever an action that changes the model occurs, the

model automatically notifies all of these views.
 The views then refresh their displays.
 The guiding principle here is that each view is a faithful

rendering of the model.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Example 1: library system
 a GUI screen using which users can place holds on books.
 Another GUI screen allows a library staff member to add copies of

books.
 Suppose that a user views the number of copies, number of holds

on a book and is about to place a hold on the book.
 At the same time, a library staff member views the book record and

adds a copy.
 Information from the same model (book) is now displayed in

different formats in the two screens.

Example 2: Mail Server
 A user logs into the server and looks at the messages in the

mailbox.
 In a second window, the user logs in again to the same mail server

and composes a message.
 The two screens form two separate views of the same model.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Example 3: graph-plot of pairs of (x, y) values.
 The collection of data points constitutes the model.
 The graph-viewing software provides the user with

several output formats—bar graphs, line graphs, pie
charts, etc.

 When the user changes formats, the view changes
without any change to the model.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation: MVC

• The designer needs to have a clear idea about how the
responsibilities are to be shared between the subsystems.

• This task can be simplified if the role of each subsystem is
clearly defined.

• The view is responsible for all the presentation issues.
• The model holds the application object.
• The controller takes care of the response strategy.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The definition for the model will be as follows:

Each of the views is an Observer and implements the update
method.

If a view is no longer
interested in the
model, it can be
deleted from the list
of observers.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• Since the controllers react to user input, they may send
messages directly to the views asking them to refresh
their displays.

• For each feature, we start with a detailed list of specifications,
and as belonging to one of the three categories.

• There is always an initiation step for each operation;
• The manner in which the user is to be shown the feature
• The manner in which it is invoked are part of the presentation.
• Changes to the application object are made by invoking the

methods of model.
• As the application object is modified, the display needs to be

modified to reflect the changes.
• Modifying the display is again a matter for presentation.
• It is not always possible to have a clean division of the

components such that some components are designated for
data input and the rest are for data display.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• The approach =>create a UI with functionality to serve
the purpose of both the view and the controller.

• Display components will be available to the view, which
invokes the appropriate display commands.

• Components which capture events generated by user
inputs are configured to pass on the message to the
appropriate subsystem;

• note that events for some operations (like scrolling) are
handled by the view,

• whereas others (like add, delete) are sent to the
controller.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Benefits of the MVC Pattern:
1. Cohesive modules:

 Instead of putting unrelated code (display and data) in the same
module, separate the functionality so that each module is cohesive.

2. Flexibility:
 The model is unaware of the exact nature of the view or controller it is

working with=>Simply an observable.
 This adds flexibility.

3. Low coupling:
 Modularity of the design improves the chances that components can

be swapped in and out as the user or programmer desires.
 Promotes parallel development, easier debugging, and maintenance.

4. Adaptable modules:
 Components can be changed with less interference to the rest of the

system.
5. Distributed systems:

 Since the modules are separated, it is possible that the three
subsystems are geographically separated.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Analysing a Simple Drawing Program

• Apply the MVC architectural pattern design to create and label
figures. The purpose is in two folds:
 To demonstrate how to design with an architecture in mind

 Start with a high-level decomposition of responsibilities
across the subsystems.

 The designer gets to decide which classes to create for each
subsystem,

 But the responsibilities associated with these classes must
be consistent with the purpose of the subsystem.

 To understand how the MVC architecture is employed
 try to have three clearly delineated subsystems for Model,

View, and Controller.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Specifying the Requirements

Initial wish-list calls for software that can do the following

1. Draw lines and circles.
2. Place labels at various points on the figure; the labels are strings.

A separate command allows the user to select the font and font
size.

3. Save the completed figure to a file. We can open a file containing
a figure and edit it.

4. Backtrack our drawing process by undoing recent operations.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Drawing Program let us adopt the following ‘look
and feel:’

• The software will have a
Simple frame with a display panel on which the figure will be displayed,
A command panel containing the buttons.
There will be buttons for each operation, which are labeled like Draw Line,

Draw Circle, Add Label, etc.
The system will listen to mouse-clicks which will be employed by the user

to specify points on the display panel.
• The display panel will have a cross-hair cursor for specifying points and a_

(underscore) for showing the character insertion point for labels. The default
cursor will be an arrow.

• The cursor changes when an operation is selected from the command menu.
When an operation is completed, the cursor goes back to the default state.

• To draw a line, the user will specify the end points of the line with mouse-
clicks.

• To draw a circle, the user will specify two diametrically opposite points on the
perimeter. For convenient reference, the center of each circle will be marked
with a black square. To create a label, the starting point will be specified by a
mouse-click.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Defining the Use Cases

1. Use-case table for Drawing a line

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Use-case table for Adding a Label

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. Use-case table for Change Font

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

4. Use-case table for Select an Item

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Designing the System
• Our architecture specifies three principal subsystems, viz., the Model,

the View and the Controller.
• Look at the individual use cases and decide how the responsibilities are

divided across the three subsystems.

1. Defining the Model
• We keep a collection of line,

circle, and label objects
• Each line is represented by

the end points, and
• each circle is represented by

the X-coordinates of the
leftmost and rightmost
points and

• The Y -coordinates of the top and bottom points on the perimeter
• For a label, the model stores the coordinate’s starting position, the text,

and the style and size of the characters in the string.
• The model also provides mechanisms to access and modify its collection

objects.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Defining the Controller
• The controller is the subsystem that orchestrates the whole

process => thus defining its role is critical.
• When the user attempts to execute an operation, the input is

received by the view.
• The view then communicates this to the controller.
• This communication can be effected by invoking the public

methods of the controller.
Example: Drawing a Line:
 The user starts by clicking the Draw line button, and in response,

the system changes the cursor=> this is a responsibility of view
 The button click indicates that the user has initiated an operation

that would change the model.
 This operation is informed to the controller that creates a line

object with end points unspecified.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Example: Drawing a Line: contd…

Sequence of operations for drawing a line

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Drawing a Circle

• The actions for drawing a circle are similar. But some
additional processing to be done,

• i.e., the given points on the diameter must be converted to
the the four integer values,

• This requires a mapping to convert the input to the form
required by the model.

• This can be performed in the controller.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Adding a Label

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Dealing with the Environmental Variables
• Most interactive systems need to remember the values of

certain parameters to make the system user-friendly.
• For instance, a word-processing system remembers the size

and font of the characters so that the user does not have to
specify these with every operation.

• In example, for creating a label, we choose to store these in
the view, and this has some consequences for the behaviour
of the system.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Selection and Deletion
• The two operations are treated as two independent operations

• The steps involved in implementing this are as follows:
1. The user gives the command through a button click. This is followed by a

mouse click to specify the item. Both of these are detected in the view
and communicated to the controller.

2. Since the view gets the items from the model, it would seem appropriate
that the model have a mechanism to flag the selected items. This can be
done by having a tag field for each item, or simply by moving the selected
items to a separate container.

3. Since the model is to be used strictly as a repository for the data, the task
of iterating through the items is done in the controller, which then invokes
the methods of the model to mark the item as selected.

4. Model notifies view, which renders the unselected items in the default
colour (black) and the selected items in red. View gets an enumeration of
the two lists separately and uses the appropriate colour for each. Note
that model only stores a separate list of the selected items. It is the view
that decides how the two lists are to be rendered.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Saving and Retrieving the Drawing
User requests a save/retrieve operation, the system asks for a file name
which the user provides and the system completes the task.

1. The view receives the initial request from the user and then prompts the
user to input a file name.

2. The view then invokes the appropriate method of the controller, passing
the file name as a parameter.

3. The controller first takes care of any clean-up operation that may be
required. For instance, if our specifications require that all items be
unselected before the drawing is saved, or some default values of
environment variables be restored, this must be done at the stage. The
controller then invokes the appropriate method in the model, passing the
file name as a parameter.

4. The model serializes the relevant objects to the specified file.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Design of the Subsystems
1. Design of the Model Subsystem
2. Design of Item and Its Subclasses
3. Design of the Controller Subsystem
4. Design of the View Subsystem

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

1. Design of the Model Subsystem
The model should have methods for
supporting the following operations:
1. Adding an item
2. Removing an item
3. Marking an item as selected
4. Unselecting an item
5. Getting an enumeration of selected
items
6. Getting an enumeration of
unselected items
7. Deleting selected items
8. Saving the drawing
9. Retrieving the drawing

Class diagram for model

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Design of Item and Its Subclasses
• Item will have several subclasses, one for each shape.
• Each subclass will store attributes that are relevant to the corresponding

shape.

Rendering the items: Rendering is the process by which the data
stored in the model is displayed by the view.
• How the drawing is done are dependent on the following two

parameters:
1. The technology and tools that are used in creating the UI
2. The item that is stored

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Catering to Multiple UI Technologies
The render method will decompose the circle into smaller
components as needed, and invoke the methods available in the UI
to render each component.

• we need abstract classes for
implementing the technology-
independent parts of lines (Line) and
labels (Label).

• They are extended by classes such as
SwingLabel, SwingLine, EasyLabel, etc.

• This extension adds another six classes.
• Each abstract class ends up with as

many subclasses as the number of Uis
that we have to accommodate.

The number of classes needed to
accommodate such a solution is given by:
Number of types of items × Number of UI
packages

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Class explosion due to multiple UI implementations

Interaction diagram for the bridge pattern

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Interaction diagram for the bridge pattern

• The intent of the bridge pattern is as follows: Decouple an
abstraction from its implementation so that two can vary
independently.

• The bridge pattern takes care of these problems avoiding a
permanent binding

• The total number of classes is now reduced to
Number of types of items + Number of UI packages

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. Design of the Controller Subsystem

• Unlike the view, which by definition could be implemented in
multiple ways,

• We structure the controller so that it is not tied to a specific view
and is unique to the drawing program.

• The view receives details of a shape (type, location, content, etc.)
via mouse clicks and key strokes.

• As it receives the input, the view communicates that to the
controller through method calls.

• This is accomplished by having the fields for the following purposes.
1. For remembering the model;
2. To store the current line, label, or circle being created. Since we

have three shapes, this would mean having three fields

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Controller class diagram

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

4. Design of the View Subsystem

• The MVC pattern makes the view largely independent of the other
subsystems.

• Its design is affected by the controller and the model in two important ways:
1. Whenever the model changes, the view must refresh the display, for which

the view must provide a mechanism.
2. The view employs a specific technology for constructing the UI. The

corresponding implementation of UIContext must be made available to
Item.

Basic structure of the
view class

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• Commands to create labels, circles, and lines all require mouse
listeners.

• Since there is a one-to-one correspondence between the mouse
listeners and the drawing commands,

• we have the following structure:
1. For each drawing command, we create

a separate class that extends JButton.
For creating labels, for instance, we
have a class called LabelButton. Every
button is its own listener.

2. For each class in (1) above, we create a
mouse listener. These listeners invoke
methods in the controller to initiate
operations.

3. Each mouse listener (in (2) above) is
declared as an inner class of the
corresponding button class. This is
because the different mouse listeners
are independent and need not be
known to each other.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Getting into the Implementation
Implementing Item and Its Subclasses

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation of the Model Class

The setUIContext method in the model in turn invokes the
setUIContext on Item.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation of the Controller Class

• The class must keep track of the current shape being created, and
this is accomplished by having the following fields within the class.

• When the view receives a button click to create a line, it calls one of
the following controllermethods.

• The controller supplies three versions of the makeLine method and
keeps track of the number of points independently of the view.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation of the View Class

• The view maintains two panels: one for the buttons and the
other for drawing the items.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The Driver Program

• The driver program sets up the model.
• The view itself uses the Swing package and is an

observer of the model.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

11.7 Implementing the Undo Operation

In the context of implementing the undo operation, a few issues need to be
highlighted.
1. Single-level undo versus multiple-level undo
2. Undo and redo are unlike the other operations
3. Not all things are undoable
4. Blocking further undo/redo operations
5. Solution should be efficient
A simple scheme for implementing undo could be something like this:
1. Create a stack for storing the history of the operations.
2. For each operation, define a data class that will store the information

necessary to undo the operation.
3. Implement code so that whenever any operation is carried out, the

relevant information is packed into the associated data object and
pushed onto the stack.

4. Implement an undo method in the controller that simply pops the
stack, decodes the popped data object and invokes the appropriate
method to extract the information and perform the task of undoing the
operation.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• One obvious approach
for implementing this
is to define a class
StackObject that
stores each object
with an identifying
String.

• Each command has an
associated object that
stores the data needed to
undo it. The class
corresponding to the
operation of adding a line
is shown below.

Implementing the Undo Operation contd…

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementing the Undo Operation contd…
• When the operation for adding a

line is completed, the
appropriate StackObject instance
is created and pushed onto the
stack.

• Decoding is simply a matter of
popping the stack reading the
String.

• Finally, undoing is simply a matter of retrieving the
reference to and removing the line form the model.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementing the Undo Operation contd…

• Representing the drawing of a line

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementing the Undo Operation contd…

Sequence diagram for adding a line

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• The central idea behind the command pattern is to employ
two stacks:

1. one for storing the commands that can be undone (history
stack) and

2. The other for maintaining the commands that may be
redone (redo stack).

The class UndoManager maintains these stacks:
1. The undo manager plays the role of the controller
2. as soon after the command object is created
3. view informs the undo manager, which is then expected to

initiate its bookkeeping operations.
4. when the view has received all of the data needed to

complete the command, it notifies the UndoManager once
more.

5. The two methods beginCommand and endCommand are for
these two purposes.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

So the general rule is that when the undo operation
is requested, if the top of the undo stack is a command
that can be undone, thecommand is undone and
transferred to the redo stack.

Status of the stacks and the collection in the
model

Status of the stacks and the collection in
the model after undo

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Incomplete command

• Refer to a command that has not yet been properly terminated.
• An incomplete item is an item, such as a line or a label, that might not

have proper values for every field.
EX: For example, suppose a user clicks the ‘Create Line’ button and clicks one
point. Before clicking a second time to specify the second point, suppose the
user clicks the ‘Add Label’ button. The Create Line command is incomplete.

How should this be handled? We can suggest at least two ways:
1. We could prevent the possibility of users aborting commands in the

middle. A popular approach is to disable all command buttons when a
new command is finished and leave them disabled until the command
is completed. When the command is completed, all of the buttons are
enabled.

2. A second possibility is to handle this with an additional method in
both the undo manager and the command class.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Implementation : Refer page number 368 to 370

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Drawing Incomplete Items
There are a couple of reasons why in the drawing program we
might wish to distinguish between these two types of items.
1. Incomplete items might be rendered differently from

complete items.
2. Some fields in an incomplete item might not have ‘proper’

values.
The approach would be along the following lines.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Adding a New Feature
• Most interactive systems that are used to create graphical objects,

allow users to define new kinds of objects on the fly.
Ex1: system for writing sheet music may allow a user to define a sequence
of notes as a group. This would enable the user to manipulate these notes
as a group, making copies of these as needed.
Ex2: In a system for drawing electrical circuits, a set of components
interconnected in a particular way could be clustered together as a ‘sub-
circuit’ that can then be treated as a single unit.

The process for creating such a ‘compound’ object would be as follows:

• The user would select the items that have to be combined by clicking on
them.

• The system would then highlight the selected items.
• The user then requests the operation of combing the selected items into

a compound object, and the system combines them into one.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Adding a New Feature Contd…
• Once a compound object has been created, it can be treated as a

any other object.
• This process can be iterated, i.e., a compound object can be

combined with other objects (which could themselves be compound
or simple objects) to create another compound object.

• The system also allows the user to ‘breakdown’ a compound item
into its constituent items by first selecting the item(s) to be broken
down and then choosing the ‘decompose’ operation.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Adding a New Feature contd…

Composite structure of the item hierarchy

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Pattern-Based Solutions

• A pattern is a solution template that addresses a recurring
problem in specific situations.

• In a general sense, these could apply to any domain.
• In the context of creating software, three kinds of patterns have

been identified.
1. At the highest level, we have the architectural patterns. These

typically partition a system into subsystems and broadly define
the role that each subsystem plays and how they all fit
together.

Architectural patterns have the following characteristics:
1. They have evolved over time
2. A given pattern is usually applicable for a certain class of

software system
3. The need for these is not obvious to the untrained eye

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Pattern-Based Solutions contd…

2. At the next level, we have the design patterns.
• These solve problems that could appear in many kinds of software

systems.
• Once the principles of object-oriented analysis and design have been

established it is easier to derive these.
3. At the lowest level we have the patterns that are called idioms.
• Idioms are the patterns of programming and are usually associated with

specific languages.
• They typically refer to the use of certain syntactic elements of the

language.
• Sometimes,we may save these as ‘macros’ to be copied and pasted as

needed thus enabling us to be more productive in terms of code-
generation

• Idioms are something like these, but they are usually carefully designed
to take the language features (and quirks!) into account to make sure
that the code is safe and efficient.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

11.10 Examples of Architectural Patterns

1. The Repository : This architecture is characterised by the
presence of a single data structure called the central
repository. Subsystems access and modify the data stored
in this. An example : managing an airline.

2. The Client-Server: In such a layout, there is a central
subsystem known as a server and several smaller
subsystems known as clients which are typically quite
similar.
• There is a fair amountof independence in the control flow, and

each subsystem may be using a different thread.
• Synchronisation techniques are often employed to manage

requests and transmit results.
• Example: The world-wide-web is probably the best example of

such an architecture.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. The Pipe and Filter :
• The system in this case is made up of filters, i.e.,

subsystems that process data, and pipes, which can be
used to interconnect the filters.

• The filters are completely mutually independent and
are aware only of the input data that comes through a
pipe, i.e., the filter knows the form and content of the
data that came in, not how it was generated.

• This kind of architecture produces a system that is very
flexible and can be dynamically reconfigured.

• An example of this would be that of processing
incoming/outgoing data packets over a computer
network.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

11.11 Discussion and Further Reading

1. Separating the View and the Controller
2. The Space Overhead for the Command Pattern
3. How to Store the Items
4. Exercising Caution When Allowing Undo

• What Should be Saved to Undo an Operation?
• Designing and Implementing with Undo in Mind

5. Synchronising Updates

BMS Institute of Technology and MgmtDepartment of ISE

Module-5
Designing with Distributed Objects
(Chapter12,Book1)

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• As businesses grow, =>set up operations over large geographic
areas => may span multiple states or even countries and often
find it desirable to process data at their point of origin or create
results at the location where they are needed.

• Distributed processing offers a number of advantages.
1. It is more economical and efficient to process data at the

point of origin.
2. Distributed systems make it easier for users to access and

share resources.
3. They also offer higher reliability and availability:

 failure of a single computer does not cripple the system
as a whole.

4. It is also more cost effective to add more computing power.

Designing with Distributed Objects

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Distributed computing is not without its share of drawbacks :
1. The software for implementing them is complex

• It must coordinate actions between a number of possibly
heterogeneous computer systems;

• if data is replicated, the copies must be made mutually consistent.

2. Data access may be slow because information may have to be
transferred across communication links

3. securing the data is a challenge.
• As data is distributed over multiple systems and transported over

communication links,
• Care must be taken to guarantee that it is not lost, corrupted, or stolen.

Two approaches to building a distributed system.
1. The first mechanism uses Java Remote Method Invocation (Java

RMI), which is a piece of software, generally called middleware,
that helps mask heterogeneity.

2. The second approach uses the world-wide web itself to access
data processed at remote sites.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Client/Server Systems

Distributed systems can be classified into
1. Peer-to-peer systems and

• In the former, every computer system (or node) in the
distributed system runs the same set of algorithms; they are
all equals, in some sense.

2. Client-server systems.
• There are two types of nodes: clients and servers.
• A client machine sends requests to one or more servers,

which process the requests, and return the results to the
client.

• Many applications can use this model and these days the
software at many clients are web browsers.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Basic Architecture of Client/Server Systems

Client/Server systems

• Each client runs a program
that provides a user
interface, which may or not
be a GUI.

• The server hosts an object-
oriented system.

• clients send requests to the
server, these requests are
processed by the object-
oriented system at the
server, and the results are
returned.

• The results are then shown
to end-users via the user
interface at the clients

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Difficulty in accessing objects in a different JVM
This difficulty can be handled in one of
two ways:
1. By using object-oriented support software:

(Java RMI)
• The software solves the problem by the use of

proxies that receive method calls on ‘remote’
objects, ship these calls, and then collect and
return the results to the object that invoked
the call.

• The client could have a custom-built piece of
software that interacts with the server
software.

2. By avoiding direct use of remote objects by using the Hyper Text Transfer
Protocol (HTTP).
• The system sends requests and collects responses via encoded text messages.
• The object(s) to be used to accomplish the task, the parameters, etc., are all

transmitted via these messages.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Java Remote Method Invocation
• Java RMI is to support the building of

Client/Server systems
• server hosts an object-oriented system that

the client can access programmatically.
• The objects at the server maintained for

access by the client are termed remote
objects.

• A client accesses a remote object by getting
what is called a remote reference to the
remote object.

• After that the client may invoke methods of the object.
• The basic idea behind RMI is to employ the proxy design pattern.
• This pattern is used when it is inefficient or inconvenient (even impossible,

perhaps) to use the actual object.
• The proxy pattern creates a proxy object at each client site that accesses the

remote object.
• The proxy object implements all of the remote object’s operations that the

remote object wants to be available to the client.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Java Remote Method Invocation contd…

• When the client calls a remote method, the
corresponding method of the proxy object is
invoked.

• The proxy object then assembles a message that
contains the remote object’s identity, method
name, and parameters.

• This assembly is called marshalling.

• In this process, the method call must be represented with enough information
so that the remote site knows the object to be used, the method to be invoked,
and the parameters to be supplied.

• When the message is received by it, the server performs demarshalling,
whereby the process is reversed.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Setting up a remote object system is accomplished by the following steps:

1. Define the functionality that must be made available to clients.
This is accomplished by creating remote interfaces.

2. Implement the remote interfaces via remote classes.
3. Create a server that serves the remote objects.
4. Set up the client.

Java Remote Method Invocation contd…

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

1. Remote Interfaces
a. Define the system functionality that will be exported to clients=> implies

the creation of a Java interface
b. The functionality exported of a remote object is defined via what is called

a remote interface.
c. A remote interface is a Java interface that extends the interface

java.rmi.Remote, which contains no methods and simply serves as a
marker.

d. Clients are restricted to accessing methods defined in the remote
interface. Called remote method invocation

Remote method invocations can fail due to
a number of reasons:
1. The remote object may have crashed,
2. The server may have failed, or
3. The communication link between the

client and the server may not be
operational, etc.

as a result, all remote methods must be
declared to throw this exception.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Implementing a Remote Interface:
1. After the remote interfaces are defined, the next step is to

implement them via remote classes.
2. Parameters to and return values from a remote method may be of

primitive type, of remote type, or of a local type.
3. All arguments to a remote object and all return values from a

remote object must be serializable.
4. They also implement the java.io.Serializable interface.
5. Parameters of non-remote types are passed by copy
6. They are serialized using the object serialization mechanism,
7. They too must implement the Serializable interface.
8. Remote objects must somehow be capable of being transmitted

over networks.
9. A convenient way to accomplish this is to extend the class

java.rmi.server.UnicastRemoteObject.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The implementation of BookInterface

Book must be
compiled using
the RMI compiler
by invoking the
command rmic as
below.
rmic Book

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Passing of remote objects as references:

• When an exported remote object is
passed as a parameter or returned
from a remote method call, the stub
for that remote object is passed
instead of the object itself.

• The stub itself contains a reference to
the serialized object and implements
all of the remote interfaces that the
remote object implements.

• All calls to the remote interface go
through the stub to the remote
object.

• Parameters or return values that are not remote objects are passed by value.
• Any changes to the object’s state by the client are reflected only in the client’s

copy, not in the server’s instance.
• Similarly, if the server updates its instance, the changes are not reflected in the

client’s copy.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

3. Creating the Server
• Before a remote object can be accessed, it must be instantiated and stored

in an object registry, so that clients can obtain its reference.
• Such a registry is provided in the form of the class java.rmi.Naming.
• The method bind is used to register an object and has the following

signature:

The process of creating and binding the name is given below.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

The complete code for activating and storing the Book
object is shown below.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

4. The Client
A client may get a reference to the remote object it wants
to access in one of two ways:

1. It can obtain a reference from the Naming class using
the method lookup.

2. It can get a reference as a return value from another
method call.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

4. The Client
A client may get a reference to the remote object it wants to
access in one of two ways:

1. It can obtain a reference from the Naming class using the method lookup.
we assume that an object of type SomeInterface has been entered into the
local registry under the name SomeName.

The client can invoke remote methods on the object. the BookInterface object
are called and displayed

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

12.2.5 Setting up the System
• To run the system, create two directories, say server and client, and
• Copy the files BookInterface.java, Book.java, and BookServer.java

into server and the file BookUser.java into client.
• Then compile the three Java files in server and then invoke the

command

rmic Book
• This command creates the stub file Book_Stub.class. Copy the client

program into client and compile it.
Run RMI registry and the server program using the following commands
(on Windows).

Finally, run the client as below from the client directory.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

12.3 Implementing an Object-Oriented System on the Web
• world-wide web is the most popular medium for hosting distributed

applications.
• The browser acts as a general purpose client that can interact with any

application that talks to it using the Hyper Text Transfer Protocol (HTTP).
• All business logic and data processing take place at the server.
• Typically, the browser receives web pages from the server in HTML and

displays the contents according to the format, a number of tags and
values for the tags, specified in it.

• The browser simply acts as a ‘dumb’ program displaying whatever it gets
from the application and transmitting user data from the client site to the
server.

• The HTML program shipped from a server to a client often needs to be
customised : the code has to suit the context.

• This requires that HTML code for the screen be dynamically constructed.
This is done by code at the server.

• For server-side processing competing technologies such as Java Server
Pages and Java Servlets, Active Server Pages (ASP), and PHP.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

12.3.1 HTML and Java Servlets

• Any system that ultimately displays web pages via a browser has to
create HTML code.

• HTML code displays text, graphics such as images, links that users
can click to move to other web pages, and forms for the user to
enter data.

• An HTML program can be thought of as containing a header, a
body, and a trailer.

• The header contains code like the following:

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• There are two primary ways in which form data is encoded by
the browser:

• One is GET and the other is POST.
• GET means that form data is to be encoded into a URL while
• POST makes data appear within the message itself.

• Refer page number 400 and on for other HTML
tags.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

12.3.2 Deploying the Library System on the World-Wide
Web:
How servlets and HTML cooperate to serve web pages?

• HTML page is displayed on the client’s browser.
• The page includes, among other things, a form that allows the user to

enter some data.
• The client makes some entries in the form’s fields and submits them, say,

by clicking a button.
• The data in the form is then transmitted to the server and given to a Java

servlet, which processes the data and generates HTML code that is then
transmitted to the client’s browser, which displays the page.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

12.3.2 Deploying the Library System on the World-Wide
Web: contd…
1. Developing User Requirements

 Interface requirements
2. Design and Implementation

a. Structuring the files
b. How to remember a user
c. Configuration
d. Structure of servlets in the web-based library

system
e. Execution flow

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

1. Developing User Requirements
• Determine the system requirements:
1. The user must be able to type in a URL in the browser and connect to the library

system.
2. Users are classified into two categories: superusers and ordinary members

 superusers can execute any command when logged in from a terminal in the
library, whereas ordinary members cannot access some ‘privileged
commands’.

a. Only superusers can issue the following commands: add a member, add a
book, return a book, remove a book, process holds, save data to disk, and
retrieve data from disk.

b. Ordinarymembers and superusersmay invoke the following commands: issue
and renew books, place and remove holds, and print transactions.

c. Every user eventually issues the exit command to terminate his/her session.
3. Some commands can be issued from the library only. These include all of the

commands that only the superuser has access to and the command to issue
books.

4. A superuser cannot issue any commands from outside of the library. They can log
in, but the only command choice will be to exit the system.

5. Superusers have special user ids and corresponding password. For regular
members, their library member id will be their user id and their phone number
will be the password.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Interface requirements
• Large number of sequences of interactions are possible

between the user and the interface.
• Depict the requirements through state transition diagrams.

Logging in and the Initial Menu:

2. Commands to place a hold, remove a hold, print transactions, and renew books
are available to members of the library (not superusers) from anywhere.
3. Certain commands are available only to superusers who log in from a library
terminal: these are for returning or deleting books, adding members and books,
processing holds, and saving data to and retrieving data from disk.

1. The Issue Book
command is available only
if the user logs in from a
terminal in
the library.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Add Book: State transition diagram for add book

• By clicking on a button, it should be possible for the user to submit these
values to system.

• The system must then call the appropriate method in the Library class to
create a Book object and enter it into the catalog.

• The result of the operation is displayed in the Command Completed state.

• When the command to add a
book is chosen, the system
constructs the initial screen to
add a book,

• which should contain three
fields for entering the title,
author, and id of the book,
and then display it and enter
the Add Book state.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

State transition diagram for saving data

• From the Command Completed state, the system must
allow the user to add another book or go back to the
menu.

• In the Add Book state, the user has the option to cancel
the operation and go back to the main menu.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

State transition diagram for issuing books

A book may be checked out in two
different ways:
1. A member is allowed to check it

out himself/herself.
2. he/she may give the book to a

library staff member, who checks
out the book for the member

• In the first case, the system already has the user’s member id, so that should
not be asked again.

• In the second case, the library staff member needs to input the member id to
the system followed by the book id.

• After receiving a book id, the system must attempt to check out the book.
Whether the operation is successful or not, the system enters the Book Id
Processed state.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

State transition diagram for renewing books

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

2. Design and Implementation

To deploy the system on the web, we need the following:
1. Classes associated with the library, create classes such as Library, Member,

Book, Catalog, and so on.
2. Permanent data (created by the save command) that stores information

about the members, books, who borrowed what, holds, etc.
3. HTML files that support a GUI for displaying information on a browser and

collecting data entered by the user.
• For example, when a book is to be returned, a screen that asks for the

book id should pop up on the browser. This screen will have a prompt
to enter the book id, a space for typing in the same, and a button to
submit the data to the system.

4. A set of files that interface between the GUI and the objects that actually
do the processing. Servlets will be used to accomplish this task.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Structuring the files

HTML code for delivery to the browser can be generated in one of two ways:

1. Embed the HTML code in the servlets. This has the disadvantage of
making the servlets hard to read, but more dynamic code can be
produced.

2. Read the HTML files from disk as a string and send the string to the
browser. This is less flexible because the code remains static.

 Create a separate HTML file for every type of page that needs to be
displayed. For example, create a file for entering the id of the book to be
returned, a second file for displaying the result of returning the book, a
third file for inputting the id of the book to be removed, a fourth one for
displaying the result of removing the book, etc.

 Exploit the commonalities between the commands and create a number
of HTML code fragments, a subset of which can be assembled to form an
HTML file suitable for a specific context.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Examples of HTML file fragments

For implementation of library application refer page
number from 410

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

How to remember a user
• Servlets typically deal with multiple users.
• When a servlet receives data from a browser, it must some how figure out

which user sent the message, what the user’s privileges are, etc.
• Each request from the browser to the server starts a new connection, and

once the request is served, the connection is torn down.
• Typical web transactions involve multiple request–response pairs.
• The system provides the necessary support by means of what are known as

sessions, which are of type HttpSession.
• When it receives a request from a browser, the servlet may call the method

getSession() on the HttpServletRequest object to create a session object, or
if a session is already associated with the request, to get a reference to it.

• When a user logs in, the system creates a session object as below.
HttpSession session = request.getSession();

• When the user logs out, the session is removed as below.
session.invalidate();

• Requests other than log in requires the user to be logged in. The following
code evaluates to true if the user does not have a session: that is, the user
has not logged in. request.getSession(false) == null

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

• A session object can be used to store information about the
session. In the library system, we would like to store the user id,
the type of terminal from which the user has logged in, and
some additional information related to the user.

1. void setAttribute(String name, Object value)
2. Object getAttribute(String name)
3. void removeAttribute(String name)

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Configuration

• The server runs with the support of Apache Tomcat, which is a
servlet container.

• A servlet container is a program that supports servlet execution.
• The servlets themselves are registered with the servlet container.

URL requests made by a user are converted to specific servlet
requests by the servlet container.

• The servlet container is responsible for initialising the servlets and
delivering requests made by the client browser to the appropriate
servlet.

Directory structure for the servlets

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Structure of servlets in the web-based library system

• A servlet receives data from a
browser through a
HttpServletRequest object.

• This involves parameter names
and their values, IP address of the
user, and so on.

• For example, when the form to
add book is filled and the Add
button is clicked, the servlet’s
doPost method is invoked.

• This method has two parameters:
a request parameter of type
HttpServletRequest and a
response parameter of type
HttpServletResponse.

• These methods and doPost and
doGet are collected into a class
named LibraryServlet.

BMS Institute of Technology and MgmtDepartment of ISEDepartment of ISE BMS Institute of Technology and Mgmt

Most of the methods of LibraryServlet fall into one of five
categories:

1. One group contains methods that store information about the
user.

2. Methods to validate users and help assess access rights.
3. The getFile method reads an HTML file and returns its contents

as a String object.
4. The fourth group of methods are used for handling users who

may have invoked a command without actually logging in.
5. The final group of commands deal with processing the request

and responding to it. Refer page number 414

